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Abstract

This paper derives ex-ante confidence intervals of stock risk premium forecasts that are based

on a wide range of linear and Machine Learning models. Exploiting the cross-sectional varia-

tion in the precision of risk premium forecasts, I provide improved investment strategies. The

confident-high-low strategies that take long-short positions exclusively on stocks with precise

risk premium forecasts outperform traditional high-low strategies in delivering superior out-of-

sample returns and Sharpe ratios across all models. The outperformance increases (decreases)

with the model complexity (bias). The confident-high-low strategies are economically inter-

pretable as trading strategies of ambiguity-averse investors who account for confidence intervals

around risk premium forecasts.
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1. Introduction

Modern empirical asset pricing literature applies machine learning (ML) to estimate expected

stock excess returns (i.e., risk premiums), as these models can accommodate non-linear relations

amongst a high-dimensional set of predictors. In an influential paper, Gu, Kelly, and Xiu (2020)

(GKX) document that ML models outperform linear characteristic-based models examined by

Lewellen (2015) (henceforth Lewellen) in forecasting stock risk premiums out-of-sample (OOS).

However, nothing is known about the ex-ante precision (i.e., standard errors and confidence inter-

vals) of risk premium forecasts that are based on these models. Fama and French (1997) and Pástor

and Stambaugh (1999) show that expected return estimates from traditional, linear factor models

are unavoidably imprecise due to uncertainty about unknown parameters. Given that forecasting

with ML models entails estimating a massive number of parameters, determining the precision of

ML-based risk premium forecasts is important.

This paper estimates ex-ante (co)variances and confidence intervals of expected return forecasts

that are based on a wide range of linear and ML models, including the Lewellen model, penalized

linear models (Lasso, Ridge and Elastic Net) and Neural Networks (NN). The ex-ante confidence

intervals capture estimation uncertainty related to risk premium forecasts. Whereas variances of risk

premium estimates from linear factor models are available in the literature, those of highly complex

ML-based risk premium forecasts are not. I tackle this challenge by proving that the risk premium

forecasts that are based on various ML models have different Bayesian interpretations, whose

posterior densities are easily estimable. Thus, I obtain the confidence intervals of ML-based risk

premium forecasts using the comparable Bayesian posterior densities. The obtained (co)variances

are then statistically justified and empirically validated using Monte-Carlo simulations.

Establishing Bayesian interpretations for ML-based risk premium forecasts has three main ad-

vantages. First, ex-ante confidence intervals are easily and simultaneously obtained along with the

risk premium forecasts without additional computational costs.1 Other procedures like Bootstrap

that estimate forecast variances require retraining ML models a large number of times, rendering

1Confidence intervals are easily obtained using only a few lines of code that I make publicly available.
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them computationally infeasible.2 Second, risk premium forecasts (and their confidence intervals)

are allowed to explicitly take into account the cross-sectional correlations of stock returns, which

the majority of ML studies in finance ignore. Third, it is possible to simultaneously obtain the

the confidence intervals of the portfolio-level risk premium forecasts (e.g., 48 industry portfolios of

Fama and French (1997)), not just at the stock level.

The estimated ex-ante precision measurements are useful for numerous applications, such as

making cost-of-capital decisions (e.g., Fama and French (1997)) and conducting out-of-sample in-

ferences (e.g., Allena (2021)). As a novel application, this paper demonstrates why and how in-

corporating ex-ante precision into trading strategies is important, as it leads to significant OOS

return and Sharpe ratio improvements. In particular, many researchers (e.g. GKX and Avramov,

Cheng, and Metzker (2020)) sort stocks into deciles based solely on their return forecasts, and

they take long-short positions on the extreme predicted-return deciles. This paper provides signifi-

cant enhancements to these HL strategies by exploiting the cross-sectional variation in the ex-ante

precision of risk premium measurements. I introduce “Confident-HL” trading strategies that first

sort stocks based on their risk premium forecasts and then take long-short positions exclusively on

the subset of stocks in the extreme return-forecast-deciles that have relatively more confident risk

premium forecasts.

The Confident-HL strategies formed using unbiased return forecasts deliver superior OOS

returns and Sharpe ratios. Whereas a risk premium forecast proxies for the next period’s return,

its standard error proxies for its squared forecast error. Alternatively, when the standard error

of a stock’s risk premium forecast is large, so will its squared forecast error. The reason is that

the expected squared forecast errors equal the sum of ex-ante “variances” that capture estimation

uncertainty and squared “biases” that quantify model misspecification. Thus, the ex-ante variances

of unbiased risk premium forecasts completely predict their ex-post squared forecast errors. The

Confident-HL strategies exploit this predictability. By deliberately dropping ex-ante imprecise

forecasts, they minimize ex-post OOS misclassification of stocks into appropriate return deciles,

and thus they deliver superior returns OOS. A simple example provides the central intuition.

2In addition, bootstrap methods do not deliver reliable standard errors for zero coefficients in penalized linear
regressions Kyung, Gill, Ghosh, and Casella (2010).
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Example-1: Consider two stocks A and B with risk premiums µA and µB, respectively,

and µA > µB. Let µ̂A and µ̂B be their risk premium forecasts that are normal, unbiased, and

uncorrelated with the measurement error variance σ2. Then the expected OOS return of the HL

strategy that takes a long (short) position on the stock with the highest (lowest) risk premium

forecast equals

E(HL) = (µA−µB)P (µ̂A > µ̂B)+(µB−µA)P (µ̂B > µ̂A) = (µA−µB)

[
2Φ

(
µA − µB√

2σ

)
− 1

]
, (1)

where P (.), Φ(.) denote the probability and standard normal distribution measures, respectively.

(1) indicates that the expected OOS HL return monotonically decreases with the variance of

risk premium forecasts. In other words, between any two sets of stocks with the same levels of risk

premiums, the HL strategy formed from more precise forecasts yields higher OOS expected returns.

For example, when the forecasts are precisely measured with σ = 0, the HL strategy always, and

correctly, assigns A (B) in the long (short) leg, yielding the maximum possible expected spread

return of µA − µB. In contrast, when the forecasts are grossly imprecise with σ → ∞, the HL

strategy wrongly assigns A (B) in the short (long) leg with 50% probability, thus delivering zero

expected return. Intuitively, besides the level of risk premium forecasts, the precision helps to better

determine the cross-sectional ranking among stocks. Thus, the Confident-HL strategies exclusively

containing stocks with precise risk premium forecasts generate higher returns OOS.

The magnitude of improvements provided by the Confident-HL portfolios depends on the

model bias or how well the ex-ante standard errors of risk premium forecasts predict their ex-

post squared forecast errors. Since forecasts from NNs capture non-linear interactions amongst a

high-dimensional set of predictors, they are relatively less biased than the penalized linear model

forecasts that ignore non-linearity, which further are relatively less biased than Lewellen forecasts

that ignore non-linearity and many useful return predictors. Thus, the relative portfolio gains

delivered by ex-ate confidence intervals will be in the decreasing order of the model biases, with

the most significant gains for NNs, followed by the penalized linear, and then followed by Lewellen.

In addition, the predictive magnitudes that quantify how well ex-ante variances predict ex-post
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squared forecast errors will also be in decreasing order of model biases.

Consistent with this intuition, the empirical section documents large economic gains from

the Confident-HL portfolios across all the models, where the gains are in the decreasing order of

the model biases. It also documents that the ex-ante standard errors significantly predict ex-post

squared forecast errors across the models, where the predictability decreases with the model bias.

On a large sample of US stock returns between 1957 and 2020, I examine three forecasting models:

Lewellen, Lasso, and a 3-layer Neural Network (NN-3). And it uses a high-dimensional set of cross-

sectional and macroeconomic predictors, previously examined by GKX and Avramov et al. (2020),

to obtain OOS risk premium forecasts and their confidence intervals.

For NN-3 based risk premium forecasts, the conventional equal-weighted (value-weighted), EW

(VW), HL portfolio earns an average monthly OOS return of 2.21% (1.29%), with an annualized

Sharpe ratio of 1.36 (0.78). However, the EW (VW) Confident-HL portfolio delivers corresponding

measures of 3.84% (2.70%) and 1.78 (1.26), respectively. Thus, dropping imprecise forecasts leads

to enormous improvements in the OOS average return and Sharpe ratio. For perspective, the

Sharpe ratio improvement translates to 9.14% (7.07%) annualized holding period return difference

between the EW (VW) Confident-HL and EW (VW) HL strategies, standardizing both to have the

same return variances. In contrast to the Confident-HL strategies, the EW (VW) “Low-Confident”

portfolio that instead takes long-short positions on the subset of stocks in the extreme return-

forecast-deciles with the most imprecise risk premium forecasts yields relatively much lower OOS

average monthly return and Sharpe ratio, 1.43% (0.76%) and 0.68 (0.33), respectively.

The Confident-HL strategies also significantly outperform two other benchmark strategies:

1%-HL strategies and Low-Ivol-HL strategies. 1%-HL strategies take long (short) positions on the

top (bottom) 1% of the stocks with the highest (lowest) risk premium forecasts, thus containing

exactly the same number of stocks as the Confident-HL strategies. The average annual OOS return

difference between the (EW) VW Confident-HL and EW (VW) 1%-HL is 6.24% (6.28%), stan-

dardizing both strategies to have the same variances. 1%-HL strategies underperform because they

ignore the precision of risk premium forecasts, leading them to misclassify stocks into inappropriate

return-forecast deciles. The other benchamark, Low-Ivol-HL, is a double-sorted strategy that first
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sorts on return forecasts and then takes long (short) positions on the subset of stocks in extreme

return-forecast-deciles with low idiosyncratic return volatilities . Even the EW (VW) Low-Ivol-HL

strategy delivers substantially lower monthly return of 1.24% (0.16%) and the annualized Sharpe

ratio of 0.83 (0.12), relative to those of the Confident-HL strategies. Whereas this paper’s ex-ante

confidence intervals are conditional measures that explicitly depend on the current predictor set,

the IVOL measures do not incorporate the up-to-date information from the predictor set, thereby

not providing good predictions of the ex-post squared forecast errors. Thus, the Low-Ivol strategies

underperform.

The two main results, the outperformance of the Confident-HL portfolios and the underpefor-

mance of the Low-Confident-HL strategies, also hold for risk premium forecasts that are based on

Lewellen and Lasso models. For instance, the average annualized holding period return difference

between the EW Confident-HL and the EW HL strategies that are based on Lasso (Lewellen) is

8.22% (6.55%). The differences in Squared Sharpe ratios, Information ratios with respect to the

6-factor model that adds the momentum factor to the 5 factors of Fama and French (2015), and the

average monthly returns between the Confident-HL and the other benchmark strategies are statis-

tically significant across all the three models. The Confident-HL portfolios significantly outperform

even on the subsample of non-microcaps. And the outperformance is robust to transaction costs,

to drawdowns, and to higher-moment risks that penalize losses more than rewarding gains.

To accurately measure the economic value of incorporating confidence intervals into trading

strategies, I construct counterfactual matching strategies that resemble the Confident-HL strategies

but ignore confidence intervals. The economic value, measured by the average return difference

between both strategies, is significant across all the three models and decreases with the model bias.

The values are additional annual OOS returns of 11.78% for NN-3, 10.70% for Lasso, and 8.68%

for Lewellen. Recall that the Confident-HL portfolios outperform because the ex-ante standard

errors of risk premium forecasts predict their ex-post squared forecast errors. Consistent with this

result, I document that the ex-ante precision and the ex-post mean squared errors (MSEs) are

monotonically related across all the models. For NN-3 (Lasso, Lewellen) model, the bottom decile

of stocks with the most imprecise return forecasts attains an OOS MSE of 8.52% (7.59%, 6.38%).
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In contrast, the top decile of stocks with most precise forecasts delivers significantly lower MSE

2.26% (1.57%, 2.52%). And the steepness of the monotonicity decreases with the model bias.

Economically, the Confident-HL strategies are interpretable as the trading strategies of ambiguity-

averse investors with max-min utility who explicitly take into account the confidence intervals

around risk premium forecasts. In contrast, the traditional HL portfolios are the strategies of

ambiguity-neutral investors who ignore confidence intervals. While Garlappi, Uppal, and Wang

(2007) discuss the trading strategies of ambiguity-averse investors, the novelty of this paper is to

show why such strategies sorted on the ex-ante confidence intervals can deliver superior returns OOS

(see Example-1). The Confident-HL strategies are also interpretable as a stylized class of mean-

variance portfolios that regularize the mean-variance weights depending on the ex-ante variances

of risk premium forecasts to mitigate estimation uncertainty.

In the time-series, ex-ante standard errors reflect stock market uncertainty, with standard

errors increasing by a factor of more than two after major shocks such as Black Monday, Lehman

Bankruptcy, and Covid. Since many individual predictors (e.g., price trends) deviate from their

usual distributions when markets are uncertain, risk premium forecasts based on these unusual

predictors will also be imprecise. Thus, ex-ante standard errors can capture market uncertainty.

Cross-sectionally, the ex-ante standard errors are associated with a multitude of characteristics,

such as size, book-to-market, and momentum, and a few characteristics cannot explain them. This

explains why sorting on confidence intervals provides more portfolio gains than sorting on a single

characteristic like size or IVOL (e.g., 1%-HL and Low-Ivol-HL). At the portfolio-level, ML models

more precisely forecast risk premiums of industry portfolios related to Financial Services, Business

Services, Banks, Chips, Retail and Oil, suggesting that the existing predictors and models are

more suited for estimating risk premiums of these industries. Possible mechanisms that explain the

cross-sectional variation in the precision of risk premium forecasts warrants a future study.

Overall, this paper estimates the ex-ante precision of risk premium forecasts that are based on a

wide range of linear and Machine Learning models. It then shows that the Confident-HL strategies

that incorporate the ex-ante precision deliver superior OOS performance across all models, where

the improvements increase with model complexity.
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1.1. Contribution

This is the first paper to estimate the (co)variances of risk premium forecasts that are based on

penalized linear models and NNs, both at the stock-level and at the portfolio-level. I also contribute

to the literature on ML applications in asset pricing. I discuss each in turn.

Penalized linear models. Kyung et al. (2010) provide a Bayesian framework to estimate

otherwise intractable standard errors of forecasts that are based on penalized linear models, includ-

ing LASSO, Ridge, and Elastic-net, assuming an iid data generating process. Simiarly, most ML

studies in finance (e.g., GKX and Avramov et al. (2020)) also implicitly make the iid assumption

to generate risk premium forecasts. Since this assumption ignores cross-sectional dependence of

stock returns, it violates existing empirical evidence and theoretical models like the CAPM. So,

this paper explicitly takes into account the cross-sectional correlation structure of stock returns to

estimate risk premium forecasts and their (co)variances more robustly.

Neural Networks. I make methodological advancements relative to Gal and Ghahramani

(2016) (GG), who show how to estimate standard errors of NN-based forecasts, in three dimensions.

First, this paper incorporates the cross-sectional correlation of stock returns while estimating risk

premium forecasts and their (co) variances, whereas GG assume that data are iid. Second, I show

how to compute the variances of “prediction means” (i.e., risk premium forecasts), which are more

relevant in the finance literature, whereas GG compute those of individual “raw” predictions (i.e.,

excess return forecasts). Last, I show how to compute the marginal and joint densities of NN-based

risk premium forecasts that GG do not provide but are necessary for computing portfolio-level

variances.

Asset Pricing studies in ML. Several prominent researchers apply ML to address vari-

ous asset pricing questions. For instance, ML has been used by Feng, Giglio, and Xiu (2020)

to understand the contribution to asset pricing of a new factor, above and beyond what existing

factors explain; by Chen, Pelger, and Zhu (2020) to estimate the stochastic discount factor im-

plied by the no-arbitrage restriction; by Bryzgalova, Pelger, and Zhu (2020) to construct a set of

statistically-motivated test assets, and by Jensen et al (2022) to obtain transaction-cost-adjusted
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efficient portfolios. Instead of using ML to address an asset pricing question, I quantify the uncer-

tainties of forecasts made by ML models to understand the scenarios when these ML models make

precise return forecasts and for what stocks. I also show how this precision information helps to

form better investments. Finally, the Confident-HL strategies are fundamentally different from the

idiosyncratic volatility (IVOL) strategies (Ang, Hodrick, Xing, and Zhang (2006)). Whereas IVOL

strategies take short positions on stocks with relatively large idiosyncratic return volatilities, the

Confident HLs totally exclude stocks with relatively large risk premium forecast variances.

The paper also relates to several methodological papers outside the finance literature that

conduct inferences based on various ML-based predictions. For example, Farrell, Liang, and Misra

(2021) provide nonasymptotic high-probability bounds for neural network predictions using a semi-

parametric framework. However, they do not explicitly provide confidence intervals nor joint den-

sities of NN-based predictions, which are the main focus of this paper. Wager, Hastie, and Efron

(2014), and Wager and Athey (2018) provide methods to estimate standard errors of forecasts that

are based on random forests. However, their approach does not have a Bayesian interpretation and

thus cannot yield portfolio-level forecast variances. A similar exercise with random forests is left

for the future.

2. Risk Premium Forecasts and their Ex-ante Precision

This section presents the statistical framework to estimate ex-ante confidence intervals and

(co)variances of risk premium forecasts that are based on linear regression, LASSO, Ridge, Elastic

Net, and Neural Network models. It proves that the forecasts from these models have different

Bayesian interpretations whose posterior densities are easily estimable. Thus, the (co)variances of

risk premium forecasts are obtained using the comparable Bayesian forecasts’ posterior densities.

Although Bayesian posterior variances and frequentist variances philosophically represent different

entities, the Internet Appendix discusses the frequentist consistency of the estimated (co)variances.

Notations: Throughout this section, ri,t+1 denotes stock i’s excess return at period t+1; {zit}

denotes a large set of p stock i’s raw predictors, such as size, book-to-market, 1-month momentum
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returns, at time t; and {ηi,t+1} denotes the set of model residuals with zero mean.

2.1. Linear, Lasso, Ridge, and Elastic Net:

Under the penalized linear model specification, the excess returns are modeled as

rit+1 = zTitβ + ηi,t+1, (2)

where the parameters β = {β1, β2, . . . , βp} are unknown and must be estimated.

2.1.1. Parameter and Confidence Interval Estimation under the IID Assumption.

Most studies in finance estimate the unknown parameters by minimizing the following penalized

MSE over the training sample:

β̂ = argmin
β

1

NTrNS

∑
t∈Tr

∑
i∈S

(
ri,t+1 − zTitβ)

)2
+ λ1||β||1 + λ2||β||2, (3)

where Tr is the training sample over NTr periods; S is the total set of NS stocks; ||.||1 represents

the L1 norm operator; ||.||2 the L2 norm operator; λ1 and λ are the L1 and L2 “hyperparameters”

that prevent overfitting. The model is linear if λ1 = 0 and λ2 = 0; LASSO if λ1 ̸= 0 and λ2 = 0;

Ridge if λ1 = 0 and λ2 ̸= 0; and Elastic Net if both λ1 ̸= 0 and λ2 ̸= 0. Risk premiums are then

forecasted using zTit β̂. The estimated parameters and forecasts enjoy the Oracle property under the

iid assumption of residuals (Zou (2006)).

Bayesian Interpretation of Penalized Linear Models. When the residuals are further

assumed to beN(0, σ2
η), Kyung et al. (2010) prove that the estimated β̂ is identical to the (Bayesian)

posterior mode of β under the following exponential prior on β:

Π(β|σ2
η) ∝ exp

{
−λ1

ση

p∑
j=1

|βj | −
λ2

2σ2
η

p∑
j−1

|βj |2
}

(4)

Note that the prior in (4) collapses to the standard diffuse prior under a linear model. The
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(co)variances of risk premium forecasts could then be obtained using the posterior variances of the

Bayesian predictive density, which is easily estimated using a simple Gibbs Sampling procedure in

the spirit of Kyung et al. (2010).

However, the iid specification of the residuals ignores the cross-sectional dependence of monthly

stock returns, clearly violating existing empirical evidence and theoretical models like the CAPM.3

Thus, the following subsection relaxes the iid specification in the estimation of risk premium fore-

casts and their (co)variances.

2.1.2. Parameter and Confidence Interval Estimation under the non-IID Assumption.

To take into account the cross-sectional dependence of stock returns, I model the residuals

using the following factor model that captures the cross-sectional dependence of stock returns.

ηit = Λift + ϵit, ϵit ∼ N(0, σ2
ϵ ), (5)

where the idiosyncratic errors, ϵit, are assumed to be iid, and the factor ft has zero mean.

While multiple factors could be allowed to model the residuals, Smith and Timmermann (2021,

2022) document that the single common factor, innovations in the market portfolio, sufficiently

captures the cross-sectional correlation structure in the linear regression of monthly stock returns

on a set of lagged characteristics. So, I consider a one-factor model with the monthly market return

innovations as the factor.

I further specify the factor loadings as a function of few characteristics,

Λi = a0 + a1Sizei,t−1 + a2BMi,t−1 + a3Momi,t−1, (6)

where Sizei,t−1 denotes the market cap of firm i at time t−1; BMi,t−1 denotes the book-to-market

of firm i at time t− 1; Momi,t−1 denotes the 1-year momentum return of firm i at time t− 1.

The specification in (6) is motivated for two reasons. First, it is consistent with the conditional

3Ignoring time-series correlations is expected to not pose serious problems because monthly stock returns are
documented to exhibit insignificant or weak auto-correlations (Fama (1971)).
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CAPM (Ferson and Harvey (1999) and Kelly, Pruitt, and Su (2019)) and allows for time-varying

factor loadings. Second, it is not possible to estimate Λi in unbalanced panels for stocks that

are newly listed or that have limited return history. The specification in (6) tackles this problem

by exploiting the entire pool to estimate the factor loadings of all stocks, including those with

limited trading history. Empirically, the null hypothesis that the residuals satisfy (5) and (6) is not

rejected.4

While (5) and (6) specify a known factor model with loadings that take a specific paramteric

form, the paper’s estimation framework generally applies to the specification that has multiple

latent factors and loadings in the spirit of Pesaran (2006), Bai (2009), and Lu and Su (2016).

Importantly, when the residuals are non-iid, the usual risk premium forecasts from penalized

linear models that are obtained by minimizing the regularized mean squared error (MSE), as

in GKX, would not only be inefficient, but they also would not enjoy the Oracle property (i.e.,

consistent variable selection). The desirable forecasts that are efficient and satisfy the Oracle

property will be those that instead maximize the penalized log-likelihood (Fan and Li (2001), Fan

and Peng (2004), and Lee and Liu (2012)).5 These estimators are given by

β̂l = argmin
β

1

NTrNS

∑
t∈Tr

∑
i∈S

(
ri,t+1 − zTitβ − Λift+1

)2
(f2

t+1) + λ1||β||1 + λ2||β||2

= argmin
β

1

NTrNS

∑
t∈Tr

∑
i∈S

(
r̄i,t+1 − zTitβ

)2
(f2

t+1) + λ1||β||1 + λ2||β||2 (7)

where Λi is given in (6); and r̄i,t+1 = ri,t+1 −Λift+1, which represents othorgonalized returns with

respect to the market factor.

Thus, the main difference between the iid-case estimator β̂ in (3) and the non-iid-case estimator

β̂l in (7) is that the latter focuses on forecasting the orthogonalized returns, whereas the former

targets the raw returns. In fact, β̂l can be interpreted as the penalized WLS coefficients in the

regression of orthogonalized returns on {zit}, where the weights are proportional to the market

4I validate this by estimating the average pairwise correlations between the idiosyncratic errors {ϵi,t} and testing
their significance using the cross-sectional dependence test proposed by Pesaran (2021). The null of non dependence
is not rejected by the data. See also page 560 in Smith and Timmermann (2022).

5See sections 3 and 5 in Lee and Liu (2012) for a theoretical proof and a simulation evidence, respectively.
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factor. While the orthogonalization captures the cross-sectional dependence of the model residuals,

the factor weighting accounts for the residual heterogeneity. The risk premium forecasts are then

given by zitβ̂l, whose (co)variances are estimated by establishing the following Bayesian result.

Theorem 1: When excess returns are modeled using a linear model as in (1) with the model resid-

uals satisfying the factor structure in (5), the penalized log-likelihood estimator in (7) is identical

to the Bayesian posterior mode of β under the double exponential prior of β in (4).

Appendix provides the proof. Thus, the confidence intervals of risk premium forecasts could

be estimated using the posterior density of β under the double exponential prior. In particular, the

(co)variance of risk premium forecasts equal the posterior (co)variances of the risk premium pre-

dictive density, which is easily obtained using the Gibbs Sampling algorithm described in Appendix

A. The algorithm involves repeated sampling of the parameters, i) β; ii) the scale parameters that

govern the penalty; iii) and the residual variance parameters {σϵ, a0, a1, a2}, from their respective

conditional posterior densities given the other parameters.

2.2. Neural Networks

GG prove that forecasts from NNs that impose “dropout” regularization have equivalent

Bayesian interpretation, whose posterior densities are easily estimable.6 Building on this insight,

the section extends GG in three dimensions. First, it computes the variances of “prediction means”

(i.e., risk premium forecasts), which are more relevant in the finance literature, whereas GG com-

pute those of individual “raw” predictions (i.e., excess return forecasts). Second, it computes the

marginal and joint densities of NN-based risk premium forecasts that GG do not provide but are

necessary for computing portfolio-level variances. Last, it incorporates the cross-sectional corre-

lation of stock returns while estimating risk premium forecasts and their (co) variances, whereas

GG assume that data are iid. I present all proofs and technical details in Appendix and Internet

Appendix, respectively. Below I directly discuss how NN-based risk premium forecasts and their

6More specifically, NNs that impose dropout are mathematically equivalent to approximating a Bayesian Gauss-
sian Process using a sophisticated methodology known as Variational Inference (VI). See Allena and Chordia (2022)
for a detailed discussion on VI and its application in finance.
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(co)variances are estimated.

Like GKX, I consider “feed-forward” NNs that consist of an “input layer” of raw predictors,

one or more “hidden layers” and an “output layer” of a final prediction, in that order. Each layer

is composed of neurons that aggregate information from the neurons of the preceding layer. Thus,

information hierarchically flows from the raw predictors of the input layer to the neurons in the

hidden layers and finally to the final prediction in the output layer.

Figure 1. Example of a 1-layer Neural Network

b1

x1

x2

x3

Input layer

b2

h1,1

h2,1

h3,1

h4,1

Hidden

layer

y

Output

layer

Note: An example of a 1-layer, feed-forward neural network.

Figure (1) shows a simple example of a 1-layer NN (NN-1) with 3 and 4 neurons in the input

and hidden layers, respectively. {x1, x2, x3}, {hk,1}4k=1, and y are the sets of neurons in the input,

hidden, and output layers, respectively. Furthermore, {xi}3i=1 are raw individual predictors, and y

is the final output prediction. Each neuron in the hidden layer applies a nonlinear function (ϕ) to

an aggregate signal received from the preceding (input) layer. The aggregate signal is a weighted

sum of the preceding layer’s neurons plus an intercept, known as “bias”. Thus,

hk,1 = ϕ

b1k +

3∑
j=1

w1jkxj

 , for k = 1, 2, 3, 4, (8)
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where b1k is the intercept associated with the input (first) layer and kth neuron in the (next) hidden

layer, and w1jk is the weight associated with the jth predictor (neuron) in the input layer and the

kth neuron in the hidden layer. The linear sum, (b1k +
∑3

j=1w1jkxj), is the aggregated signal

received by the hidden layer’s hj,1 neuron from the input layer. Like GKX, the nonlinear function

ϕ takes the rectified linear unit functional form (ReLU). However, the theory developed in this

section holds for any general function. The ReLU is given by

ϕ(x) = ReLU(x) =


0 if x < 0

x otherwise.

(9)

Likewise, the final output is given by

youtput = b2 +
4∑

j=1

w2jhj,1, (10)

where w2j is the weight associated with the jth neuron in the hidden layer and the output. Thus,

given an input of Q individual predictors, x, the final prediction, youtput, based on a general NN-1

model with K hidden neurons can be expressed in the parametric form

youtput = b2 + ϕ(b1 + xW1)W2, (11)

where {W1,W2, b1, b2} are the unknown parameters. W1 and W2 are the weight matrices connecting

the imput layer to the hidden layer and hidden layer to the output layer, respectively. Intercepts

b1 and b2 are added to the hidden and output layers, respectively. W1 is a Q×K matrix, W2 is a

K × 1 vector, b1 is a K × 1 vector, and b2 is a scalar.

For simplicity, the rest of the section focuses on NN-1 models. However, the theory that follows

holds in general for any feed-forward NN with an arbitrary number of hidden layers and neurons.

Excess returns are modeled using NN-1 as:

rit+1 = F(zit;β) + ηi,t+1, E(ηi,t+1) = 0∀i, t (12)
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where F is a flexible non-linear model that takes the parametric form in (11) with β = {W1,W2, b1, b2}

and x = {zit}. Then the risk premiums are measured using F(zit; β̂), where β̂ are estimated pa-

rameters of β.

2.2.1. Parameter and Confidence Interval Estimation under the IID Assumption.

Under the iid assumption, the literature typically estimates the parameters by minimizing the

following regularized MSE:

β̂λ = argmin
β

1

NTrNS

∑
t∈Tr

∑
i∈S

(
ri,t+1 − (b2 + ϕ(b1 + zitW1)W2)

)2
+ λ

[
||W1||22 + ||W2||22 + ||b1||22 + ||b2||22

]
, (13)

where λ is the L2 regularization hyperparamter.

Because minimizing (13) is not possible in closed-forms, numerical algorithms start with an

initial estimate (guess), and then iteratively update the parameters by feeding each observation into

the training data one-by-one. Since this procedure could be computationally intensive, literature

uses stochastic gradient descent (SGD) algorithm that considers random samples (rather than the

full sample) from the training data to iteratively update the parameters until they converge.7

Besides L2, I discuss another regularization known as dropout that can be employed either

exclusively or simultaneously with other penalties, such as L2 or L1.
8 Dropout is useful because it

not only boosts the performance of NN models but also delivers forecast variances simultaneously.

Dropout. At each training iteration during parameter estimation, every neuron, including

the input neurons, but always excluding the output neurons, has a probability (1 − p) of being

temporarily dropped. These dropped out neurons are deliberately set to output 0 (equivalently,

discarded) during that iteration but are allowed to become active in the next iteration. Like λ for

L2, (1−p) (p) is a hyperparameter for Dropout. Thus, the optimal “dropout rate” (“retention rate”)

1 − p (p) is chosen to minimize the validation mean squared error. After training and obtaining

7See GKX for a detailed review of parameter estimation using SGD and other regularizations such as L1.
8Dropout is proposed by Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014).
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Figure 2. NN-1 with Dropout Regularization

Note: The figure shows an NN-1 with dropout regularization. At each training iteration, a random
subset of all neurons in one or more layers, including the input layer, but always excluding the
output layer, is dropped. Each iteration’s dropped out neurons temporarily output 0 (during that
iteration), but might become active in the next iteration.

estimated parameters, neurons are no longer dropped to make a new prediction. Figure (2) shows

an example of an NN-1 with dropout regularization. To summarize, during parameter estimation,

dropout randomly disconnects a few neurons at each iteration to avoid overfitting.

Thus, estimated parameters of an NN-1 that employs dropout and L2 regularizations satisfy

β̂λ,p = argmin
β

1

NTrNS

∑
t∈Tr

∑
i∈S

(
ri,t+1 − (b2 + ϕ(b1 + zit(p1itW1))(p2itW2))

)2
+ λ

[
||W1||2 + ||W2||2 + ||b1||2 + ||b2||2

]
, (14)

where each element in p1it and p2it is an independent draw from a Bernoulli distribution with pa-

rameter (p) (1-dropout rate). p1it and p2it are (Q×Q) and (K×K) diagonal matrices, respectively.

Thus, unknown parameters could be estimated by solving (14). Hereafter, an NN that employs L2

and dropout regularizations will be called a “dropout NN”.

Stock-level risk premium forecasts. Given newly observed “test data” (Te) of raw pre-
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dictors that do not overlap with the training and validation data sets, a dropout NN-1-based risk

premium forecast is given by

Êt(r
∗
i,t+1) = E∗

it,Dropout = (b2,{λ,p} + ϕ(b1,{λ,p} + z∗itW1,{λ,p})W2,{λ,p}), r∗i,t+1, z
∗
it ∈ Te, (15)

where the parameters, {b2,{λ,p}, b1,{λ,p},W1,{λ,p},W2,{λ,p}}, are given in (14). E∗
it,Dropout represents

the dropout NN-1-based risk premium forecast of stock i at period t. Note that no neurons are

dropped out while making predictions on the test data.

Portfolio-level risk premium forecasts. The risk premium forecast, E∗
Pt,Dropout, of port-

folio P formed using a set of stock-level weights {ωP,i,t}Si=1 at the beginning of period t+1 is given

by

Êt(r
∗
P,t+1) = E∗

Pt,Dropout =

S∑
i=1

ωP,i,tE
∗
it,Dropout, r∗i,t+1 ∈ Te, (16)

where r∗P,t+1 =
∑S

i=1 ωP,i,tr
∗
i,t+1, and E∗

it,Dropout is given in (15).

Theorems in Appendix formally prove that the above estimators have a Bayesian interpretation.

Based on these results, I now discuss how to instantly obtain (co)variances of dropout NN-based

risk premium forecasts.

Stock-level risk premium variances. Given a new observation of a stock’s raw predictors

z∗it in the test data, consider its risk premium forecast based on a dropout NN-1

E∗
it,Dropout = (b2,{λ,p} + ϕ(b1,{λ,p} + z∗itW1,{λ,p})W2,{λ,p}), ri,t+1, z

∗
it ∈ Te. (17)

Then the predictive variance of E∗
it,Dropout is estimated by the sample variance of distinct fore-

casts that are obtained by randomly dropping out neurons (with probability (1 − p)) at the test

(prediction) time. In particular,

V̂ art(E
∗
it,Dropout) =

1

D

D∑
d=1

Êi,d,t+1 −
1

D

D∑
d=1

Êi,d,t+1

2

, (18)
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where D is the total number of distinct predictions (Êi,d,t) drawn, with each Êi,d,t given by

Êi,d,t = (b2,{λ,p} + ϕ(b1,{λ,p} + z∗it(p1dW1,{λ,p}))(p2dW2,{λ,p})), z∗it ∈ Te. (19)

Every element in p1,d, p2,d is an iid draw from the Bernoulli(p) distribution. The empirical section

considers D = 100 to estimate the standard errors, as simulations confirm that it yields well-

calibrated estimates.9

Intuition. To summarize, after estimating an NN-1 model’s weights using the training and

validation data sets, variances of risk premium forecasts on the test data are quickly available by

measuring the sample variance of different forecasts that are obtained by deliberately assigning 0 to

randomly selected weights. Intuitively, as the next subsection shows, this procedure is equivalent

to drawing samples from the risk premium’s predictive distribution under a comparable Bayesian

NN that has the same number of neurons and hidden layers as the considered NN-1.

Stock-level risk premium forecast covariances. The predictive covariance between any

two estimated stock risk premium forecasts E∗
it,Dropout and E∗

jt,Dropout is estimated by

Ĉovart(E
∗
it,Dropout, E

∗
jt,Dropout) =

1

D

D∑
d=1

Êi,d,t+1 −
1

D

D∑
d=1

Êi,d,t+1

Êj,d,t+1 −
1

D

D∑
d=1

Êj,d,t+1

 ,

(20)

where Êi,d,t and Êi,d,t are given in (19).

Portfolio-level risk premium forecast variances. The predictive variance of a portfolio-

level risk premium forecast is estimated by

V̂ art(E
∗
Pt,Dropout) =

1

D

D∑
d=1

ÊP,d,t −
1

D

D∑
d=1

ÊP,d,t

2

, (21)

where

ÊP,d,t =

S∑
i=1

ωP,i,t

(
b2,{λ,p} + ϕ(b1,{λ,p} + z∗it(p1dW1,{λ,p}))(p2dW2,{λ,p})

)
, z∗it ∈ Te, (22)

9An ideal D trades-off between latency and accuracy because the former (latter) decreases (increases) with D.
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and p1,d, p2,d are iid draws from Bernoulli(p).

The procedures for computing stock-level covariances and portfolio-level variances deserve

emphasis. Note that the dropped weights (i.e., p1d, p2d draws) are the same across stocks i and

j, and across all stocks that compose P , respectively. I prove that this preserves cross-sectional

correlations among stock-level risk premium predictions, delivering consistent estimators.

The outlined procedure for obtaining standard errors in (18) and (21) generally applies to all

forecasts from NNs with an arbitrary number of layers and neurons, as long as their weights are

estimated using dropout and L2 regularizations (Gal and Ghahramani (2016)). The procedure

is also robust to adding more regularizations, such as implementing the SGD algorithm with an

arbitrary learning rate. Although the parametric forms of NNs could be mathematically formulated,

forecasting with NNs involves imposing a number of other computational regularizations like early-

stopping and batch normalization that are difficult to formulate. In that sense, forecasts from

NNs remain black-box and their econometrics are difficult to comprehend. While addressing these

concerns is beyond the scope of the paper, I take the first step in quantifying the estimation

uncertainties related to NN-based forecasts and show how these uncertainties could be exploited to

form improved trading strategies.

It is also worth emphasizing that (18) and (21) yield variances of risk premium forecasts and

not excess return forecasts. Because realized excess returns equal the sum of risk premiums and

unexpected returns due to unpredictable new information, their predictive variances equal the

sum of predictive variances of risk premium predictions and “irreducible-variance” due to unex-

pected returns. The validation data’s mean squared error is an asymptotically unbiased estimate of

irreducible-variance (Zhu and Laptev (2017)). Thus, predictive variances of excess return forecasts

could be easily estimated as well.

The main advantage of the dropout procedure is that the confidence intervals of risk premium

forecasts could be obtained by training NNs only once without additional computational costs.

While a bootstrap procedure could be employed to estimate the confidence intervals, it involves

training numerous NNs, rendering it computationally infeasible.10 Simulations in table J in Internet

10A shortcoming with the dropout is that it does not take into account the model uncertainty and assumes that
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Appendix E.E1 assert that the dropout procedure delivers well-calibrated confidence intervals in

small samples even when the residuals are allowed to be correlated in the cross-section and in the

time-series.

2.2.2. Parameter and Confidence Interval Estimation under the non-IID Assumption.

When the excess returns are not iid and described as in (5) and (6), it follows that

rit+1 − Λift+1 = F(zit;β) + ϵi,t+1, ϵi,t+1 ∼ N(0, σ2
ϵ ). (23)

Thus, valid risk premium forecasts and their (co)variances could be estimated by minimizing the

penalized squared residual sum of orthogonolized returns (r̄i,t+1 = rit+1 − Λift) rather than the

excess returns. In particular, these measures are estimated by using equations (15)-(22), but

by trading r̄i,t+1 for ri,t+1. For computing r̄i,t+1, I estimate the unknown factor loadings Λi by

first estimating excess returns with a NN using the iid assumption, as described in the previous

subsection, and then regressing the model residuals {ηi,t+1} on the market factor, as in (5) and (6).

This procedure delivers valid risk premium forecasts and confidence interval measures when Λi

is assumed to be given. If it is unknown and must be estimated, valid measures could be obtained

using Gibbs Sampling that draws conditional posteriors of i) Λi given the other NN parameters (β);

and ii) β given Λi. Since this procedure requires fitting NNs over a large number of iterations, which

is computationally challenging, I estimate risk premium forecasts and confidence intervals under the

assumption that Λi is known. Empirical results suggest that the measures obtained using the iid

assumption and the non-iid assumption with known Λi, respectively, deliver significantly enhanced

trading strategies. It is expected that the measures estimated using the non-iid assumption with

unknown Λi would provide even better results.

the model is fixed (Osband 2016). While incorporating model uncertainty is worth pursuing in the future, the biggest
advantage of dropout is that it delivers confidence intervals without additional computational costs.
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3. Improved Trading Strategies using Forecast Variances

This section shows how the previously estimated confidence intervals of risk premium forecasts

could be exploited to form improved investment strategies.

3.1. Bias-variance decomposition

The squared forecast error of a risk premium forecast F(zit, β) equals

E
[
(ri,t+1 −F(zi,t; β̂))

2
]
=
(
E(ri,t+1)− E(F(zi,t; β̂))

)2
︸ ︷︷ ︸

Bias2

+E
(
F(zi,t; β̂)− E(F(zi,t; β̂))

)2
︸ ︷︷ ︸

V ariance

+V (ϵi,t+1),

(24)

where F(zi,t) = zTit β̂ for linear models; F(zi,t) takes the structural form in (11) for NN models.

The first term in the right hand side of (24), popularly known as “squared-bias”, measures the

model misspecification of F(.) in estimating risk premiums. The second, known as “variance”,

quantifies parameter uncertainty. The ex-ante variances of risk premium forecasts derived in the

previous section are consistent estimators of the variance component. The final term, known as

“irreducible-variance”, captures the realized return variation due to unpredictable new information.

When the residuals {ϵi,t+1} are iid and if the model is not missspecified, the ex-ante variances of

risk premium forecast errors completely predict the cross-sectional (and time-series) variation in the

squared forecast errors. The Confident-HL strategies exploit this predictability. By down weighting

the stocks with high risk premium forecast variances, the Confident-HL strategies minimize the

squared forecast errors. However, the ability of ex-ante variances predicting ex-post squared forecast

errors diminishes for misspecified models because squared biases (rather than ex-ante variances)

predominantly predict squared forecast errors. Thus, the Confident-HL strategies would deliver

relatively more gains for models that are less biased. The following remark formalizes this intuition.

Remark 1: The predictive ability of ex-ante variances in predicting squared forecast errors de-

creases with the model bias. Thus, it is expected that the improvements provided by trading strategies

that utilize ex-ante confidence intervals decrease with the model bias.
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When the model residuals {ϵi,t} are not iid, the bias variance decomposition similar to (24)

holds for the orthogonolized return forecasts (rather than excess return forecasts). Here, the ex-ante

variances of the orthogonalized return forecasts predict their ex-post squared forecast errors. And

this predictability diminishes with the model bias. Given that the non-iid risk premium forecasts

discussed in the previous section are mathematically equivalent to ortghogonalized return forecasts,

remark 1 holds under the non-iid assumption for the orthogonalized forecasts.

Recall from the introduction that the forecasts from NNs are relatively less biased than the

penalized linear model forecasts, which further are relatively less biased than Lewellen forecasts .

Thus, remark 1 implies that the predictive ability of ex-ante variances in predicting squared forecast

errors is in the decreasing order of model biases, with the most significant predictability for NNs,

followed by the penalized linear and then followed by the Lewellen model. Similarly, it is expected

that the relative gains provided by the Confident-HL strategies is in the decreasing order of the

model biases. The empirical section validates both these results.

3.2. Why Confident-HL Strategies improve expected returns OOS?

Recall that ex-ante variances of risk premium forecasts proxy for the ex-post squared forecast

errors. Thus, the Confident-HL strategies that deliberately exclude (ex-ante) imprecise risk pre-

mium forecasts minimize the ex-post misclassification of stocks into inappropriate return-forecast

deciles. As a consequence, they deliver superior OOS returns and Sharpe ratios.

Simulations in table K in Internet Appendix E.E2 validate this result. Since return forecasts

have estimation error, the HL and 1%-HL strategies that rely solely on the return forecasts can

incorrectly assign stocks into inappropriate return-forecast deciles. As a result, these strategies

yield substantially lower returns than the maximum possible expected return of the high-low spread

portfolio that is attainable when the stock returns are measured with infinite precision. However,

the Confident-HL strategies selectively take long and short positions only on the subset of stocks

in the extreme return-forecast deciles that have relatively more precise risk premium forecasts, and

thus they earn superior returns OOS by minimizing the ex-post misclassification errors.
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While the simulation results in table K assume that the return forecasts are uncorrelated, table

L presents more comprehensive simulations validating the Confident-HL’s superior performance for

general cases with correlated return forecasts and trading strategies formed using various quantile-

sorted portfolios (e.g., portfolios sorted on 30th percentile, portfolios sorted on 70th percentile, and

decile-sorted portfolios, etc.). Table M further extends these simulations to a even more general

framework that models stock returns using a NN-3. Across all the simulations, the Confident-HL

strategies outperform the existing strategies that ignore ex-ante confidence intervals.

3.3. Economic interpretation of the Confident-HL strategies

3.3.1. Strategies of ambiguity-averse investors

The Confident-HL portfolios could be interpreted as the strategies of ambiguity-averse investors

with a max-min utility.11 For instance, let {µ̂l1, µ̂l2, . . . µ̂lN} ({µ̂s1, µ̂s2, . . . µ̂sN}) be the set of N

risk premium forecasts of stocks in the long (short) leg, with different forecast variances. Suppose

that the risk premium forecasts in the long (short) leg are all equal and positive (negative), i.e.,

{µ̂l1 = µ̂l2 = · · · = µ̂lN}, µ̂li > 0 ∀i; and {µ̂s1 = µ̂s2 = · · · = µ̂sN}, µsi < 0, ∀i, which the EW

HL strategies implicitly assume. Now consider an ambiguity-averse investor who forms optimal

long and short portfolios according to the following max-min expected return utility functions,

respectively

max
wli

min
{µli}

∑
wliµli, subject to (µ̂li − kσli) ≤ µli ≤ (µ̂li + kσli) , ∀i, and

∑
wli = 1 (25)

max
wsi

min
{µsi}

(
−
∑

wsiµsi

)
, subject to (µ̂si + kσsi) ≤ µsi ≤ (µ̂si − kσsi) , ∀i, and

∑
wsi = 1, (26)

where σli (σsi) denotes the standard error of the risk premium forecast of ith stock in the long (short)

leg. The utility optimizations in (25) and (26) serve two purposes. First, the constraint restricting

expected returns to lie within specified confidence intervals shows that the investor acknowledges

the estimation uncertainty. Second, the minimization over the choice of expected returns reflects

the investor’s aversion to ambiguity.

11See Garlappi et al. (2007) for an extensive discussion on the trading strategies of ambiguity-averse investors.
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It is straighforward to note that the solutions to (25) and (26) reduce to the Confident-HL

strategy that takes long (short) position exclusively on the stock in long (short) leg that has the

lowest standard error (or the highest confidence-level). Thus, the Confident-HL strategies could be

interpreted as the trading strategies of ambiguity-averse investors with a max-min utility.

3.3.2. Regularized mean-variance strategies

Note that the Confident-HL strategies that drop stocks with imprecise risk premium fore-

casts improves the expected returns of HL strategies, not necessarily their variances, as dropping

stocks may reduce the diversification benefit. So, Internet Appendix H also examines regularized

mean variance trading strategies, in the spirit of Kozak, Nagel, and Santosh (2019), that opti-

mally balances between expected HL returns and their (co)variances. However, estimating the

entire covariance matrix is a high-dimensional problem which could lead to significant estimation

uncertainty. Thus, the regularized mean-variance portfolios, considered in (26), may not deliver

significant OOS improvements relative to the Confident-HL strategies.

In fact, Internet Appendix H shows that the Confident-HL strategies are interpretable as the

regularized mean-variance strategies that impose adaptive Lasso penalties on the mean-variance

weights, where the penalties are proportional to the risk premium forecast variances of stocks. In

contrast, the regularized mean-variance strategies considered in (26) impose the standard Lasso

penalty. Since the adaptive Lasso estimators typically outperform the standard Lasso estimators,

it turns out that the Confident-HL portfolios outperform the regularized mean-variance portfolios

(see Internet Appendix).

4. Empirical results

The empirical section validates three central predictions from section 3. First, the Confident-

HL strategies outperform existing strategies that do not incorporate ex-ante confidence intervals

OOS across all models. Second, the outperformance is due to the result that the ex-ante variances

of risk premium forecasts predict ex-post squared forecast errors. Last, the magnitude of ex-ante
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standard errors in predicting ex-post squared errors decreases with the model bias, and thus the

relative gains provided by the Confident-HL strategies also decrease with the model bias.

4.1. Data, Definitions, and Replication Study

4.1.1. Data

The sample contains monthly excess stock returns of all individual firms listed in the NYSE,

AMEX, and NASDAQ exchanges between March of 1957 and December of 2020 that are included

in the CRSP database. The data include 31530 total stocks, with an average of more than 6000

stocks per month. The data also comprise a high-dimensional set of 176 raw predictors examined

by GKX and Avramov et al. (2020), including 94 individual stock characteristics analyzed by

Green, Hand, and Zhang (2017) (e.g., size, book-to-market, 1-year momentum returns). Another

74 are industry-sector dummy variables based on the first two digits of the Standard Industrial

Classification codes. The final eight are aggregate macroeconomic variables used by Goyal and

Welch (2008).12 The Treasury-bill rate proxies for the risk-free rate.

4.1.2. Models and Estimation

Lasso and Neural Network. I examine Lasso and a feed-forward NN with three hidden

layers (NN-3), with 32, 16, and 18 neurons per layer. These models were previously examined

by GKX and Avramov et al. (2020), respectively. I precisely mimic their “recursive scheme” to

estimate the model parameters and hyperparameters. The scheme first divides the data into 18

years of training (1957-1974), 12 years of validation (1975-1986), and 34 years (1987-2020) of OOS

test samples. It then estimates the parameters and hyperparameters using objective functions to

minimize the training sample’s regularized penalized likelihoods and the validation sample’s MSE,

respectively. At the end of each year, it re-estimates the model parameters, increasing the training

sample by one year. The validation sample rolls forward every year to include the most recent

12Besides these 176 predictors, GKX and Avramov et al. (2020) also consider (94 × 8) interactions between the
stock characteristics and macroeconomic variables. Since NNs automatically capture such interactions, this paper
excludes those additional variables.
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year’s data, maintaining the same size. I implement this recursive estimation framework to obtain

risk premium forecasts, as well as their confidence intervals, over the OOS test sample.

My estimation procedure differs from GKX and Avramov et al. (2020) in two important as-

pects. Whereas GKX and Avramov et al. (2020) implicitly assume iid model residuals and estimate

parameters by minimizing penalized MSEs, I estimate them by minimizing penalized likelihoods

to allow for non-iid model residuals. However, the empirical results are quite robust to estimation

with the iid specification as well, which are available in the Internet Appendix and a previous

version of the paper. Second, GKX and Avramov et al. (2020) mainly apply L1 regularization to

estimate NN parameters, but I use dropout and L2 because they enhance predictive performance

and deliver confidence intervals simultaneously. I retain the other NN hyperparameters (e.g., SGD

learning rate, Adam optimization) that GKX use.

Lewellen. The Lewellen model forecasts stock returns using a pooled regression on 15 firm-

level characteristics (e.g., size, book-to-market, accruals, asset growth ratio). The Internet appendix

describes the exact model. Since this model, unlike NN and Lasso, does not entail regularization,

I estimate the regression parameters using both training and validation data sets to make a fair

assessment. The OOS test data remain the same.

4.1.3. Definitions of Performance Metrics

The following ex-ante and ex-post precision measures are used repeatedly in the paper.

Ex-ante Confidence (EC) of a risk premium forecast is computed as

ECit =
| ̂Et(ri,t+1)|

set( ̂Et(ri,t+1))
, (27)

where ̂Et(ri,t+1) is the risk premium forecast of stock i at period t (for t+ 1) and set( ̂Et(ri,t+1)) is

its ex-ante standard error, both of which are estimated in 2. I use EC as a proxy for the ex-ante

precision because an estimate’s standard error must always be understood relative to its mean.

However, the main results still hold when inverse standard errors are instead as used as proxies for

the precision. Table D in Internet Appendix (D) presents these results.
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Ivol-based-Confidence (ECIV OL). To assess the importance of EC, I also construct a

benchmark precision measure based on stocks’ past idiosyncratic volatility (rather than this paper’s

ex-ante standard errors) as

ECIV OL
it =

| ̂Et(ri,t+1)|
IV OLit

, (28)

where IV OLit denotes the past IVOL measure of stock i at period t, which is the estimated residual

standard error in the regression of stock i’s daily returns on the value-weighted market index (Ali,

Hwang, Trombley (2003)). Unlike EC, ECIV OL is not a conditional measure because it does not

depend on the predictor set. Thus, ECIV OL measures will not predict ex-post squared forecast

errors, and the strategies formed using them will not deliver gains OOS.

Ex-post OOS R2 and MSE. The ex-post OOS R2 and OOS MSE are given by

OOS R2 = 1−
∑

(i,t)∈S(ri,+1 − r̂i,t+1)
2∑

(i,t)∈S r2i,t+1

, (29)

OOS MSE =

∑
(i,t)∈S(ri,+1 − r̂i,t+1)

2∑
(i,t)∈S 1

.

Now I describe the portfolio formation procedure.

4.1.4. Portfolio Construction

EW(VW) HL. Stocks are sorted into deciles every month based on their next month’s return

forecasts. If L and H represent the lowest and highest return forecast deciles, respectively, the

EW(VW) HL strategy takes EW (VW) long and short positions on H and L, respectively.

EW(VW) Confident-HL. The extreme return-forecast-deciles, L and H, are further (dou-

ble) sorted into deciles, {L1, L2, . . . , L10} and {H1, H2, . . . ,H10} based on their EC levels. If L10

(L1) and H10 (H1) denote the subsets of stocks with relatively highest (lowest) EC values from L

and H, respectively, the EW(VW) Confident-HL strategy takes EW (VW) long and short positions

only on H10 and L10, respectively. In other words, the Confident-HL strategies take long-short po-

sitions exclusively on the subset of stocks in the extreme return-forecast-decile that have relatively

more confident risk premiums.
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EW(VW) Low-Confident-HL. In contrast, this strategy takes EW (VW) long and short

positions on the lowest ex-ante confident subsets, L1 and H1, respectively.

To fairly assess the Confident-HL portfolios’ performance, I also construct two benchmark

strategies: Low-Ivol-strategies and 1%-HL strategies.

EW (VW) Low-Ivol-strategies. This strategy mimics EW (VW) Confident-HL except for

the fact that the double sort is based on ECIV OL rather than EC. Thus, the EW (VW) Low-Ivol-

HL strategy takes EW (VW) long-short positions exclusively on the subset of stocks in the extreme

return-forecast-deciles that have relatively more ECIV OL.

EW (VW) 1% HL strategies. These strategies take long (short) positions on the top

(bottom) 1% of the stocks that have relatively higher (lower) risk premium forecasts. Thus, they

contain the same number of stocks as the Confident-HL strategies but ignore confidence intervals.

4.1.5. Replication of Gu, Kelly, and Xiu (2020)

To ensure that this paper’s risk premiummeasurements are comparable with GKX and Avramov

et al. (2020), I replicate their studies. Figure A (B) in the Internet Appendix D presents the EW

(VW) average OOS returns and Sharpe ratios of the decile portfolios that are sorted on return

forecasts. All of these monotonically increase from decile-1 through decile-10, thereby confirm-

ing that the realized OOS returns align with their forecasts. And these results qualitatively and

quantitatively match with GKX and Avramov et al. (2020), respectively.

Having outlined the data and showing that this paper’s risk premium forecasts match those of

the previous studies, I move on to test the theoretical predictions.

4.2. Main Results: Economic Gains from the Confident-HL strategies

Table I presents a wide range of performance metrics, including OOS average monthly returns,

annualized Sharpe ratios, alphas and information ratios (with respect to Fama and French (2015)

model added to the momentum factor), of competing trading strategies. Table II shows whether

the pairwise differences in the OOS performance metrics between different trading strategies are
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statistically significant using moving block bootstrap tests that are more conservative than Diebold

and Mariano (2002), as they take into account ex-ante parameter uncertainty of risk premium

forecasts. Thus, if the bootstrap tests imply that results are significant, the DM tests also imply

significance. Internet Appendix C summarizes these bootstrap tests. And Figure 1 plots the log

cumulative returns of the competing strategies across the models.

In terms of all the performance metrics and across all the models, the Confident-HL strategies

beat the other benchmark strategies. For example, the NN-3-based VW Confident-HL strategy

yields an average OOS monthly return of 2.70%, whereas VW HL, VW Low-Confident-HL, VW

1%-HL, and VW Low-Ivol-HL deliver 1.29%, 0.86%, 1.76%, and 0.16%, respectively. The respective

monthly return differences between the the VW Confident-HL and the benchmarks, 1.41%, 1.84%,

0.94%, and 2.54%, are all statistically and economically significant. In addition, the NN-3-based

VW Confident-HL strategy improves the Sharpe ratio by at least 40% relative to the benchmarks.

For perspective, this Sharpe ratio improvement translates to 12% annualized holding period return

difference between the NN-3-based VW Confident-HL and the VW 1%-HL strategies. Similarly, the

Confident-HL strategies that are based on Lewellen and Lasso models also outperform respective

benchmarks. The annualized holding period return difference between the VW Confident-HL and

the VW HL strategies that are based on the Lasso (Lewellen) model is 10% (8%).

In contrast to the Confident-HL strategies, the Low-Confident-HL strategies underperform the

other strategies across all models. For example, the NN-3-based (Lewellen-based, Lasso-based) VW

Low-Confident-HL attains an annualized Sharpe ratio of 0.33 (0.19, -0.04), whereas the conventional

VW HL yields substantially higher Sharpe ratio of 0.78 (0.34, 0.43). In terms of cumulative returns,

the annualized holding period return difference between the above two strategies is -8% (-5%, -

6%). These results are consistent with the insight that strategies based on imprecise risk premium

forecasts misclassify stocks into inappropriate deciles and thus earn relatively lower returns and

Sharpe ratios OOS.

Robustness on non-microcaps. To investigate the extent to which microcaps drive the

outperformance of the Confident-HL strategies, I retrain linear and ML models on non-microcaps,

excluding the stocks that fall below the 20th percentile of the NYSE size distribution. Tables III,
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IV, and Figure 2 repeat the previous analysis on the non-microcap sample.

The Confident-HL strategies significantly outperform the benchmark strategies even on the

sample that excludes microcaps. For instance, the average monthly return difference between the

NN-3-based (Lewellen-based, Lasso-based) EW Confident-HL and the corresponding benchmark

strategies is at least 0.86% (0.5%, 0.92%). Except for the return differences between the Lewellen-

based Confident-HL and 1%-HL, all the other return differences are highly statistically significant.

The Confident-HL strategy gains are relatively less pronounced under Lewellen because the value

of incorporating ex-ante confidence intervals into trading strategies decreases with the model bias.

The next section validates this intuition in more detail. The differences in the squared Sharpe

ratios and the squared Information ratios between the Confident-HL and all the other strategies

are highly significant across the models. In terms of the holding period returns, the Confident-HL

strategies dominate the other strategies by a large margin across the three models.

Robustness to downside risks. Because ML-based strategies are known to display positive

skewness and excess kurtosis (Avramov et al. (2020)), table V examines several higher-moment-

adjusted performance measures that reflect the portfolios’ downside risk. The Omega, Sortio, and

upside-potential ratios, typically examined by practitioner-researchers as alternatives for Sharpe

ratios, asymmetrically penalize portfolio losses more than rewarding gains.13 Across all the higher-

order measures, the Confident-HL, strategies handily outperform the benchmark strategies. Thus,

dropping imprecise risk premium forecasts from trading portfolios also mitigates the portfolios’

downside risk.14

Robustness to transaction costs. To evaluate whether the economic gains from the

Confident-HL portfolios come at the expense of high transaction-costs, the “Turnover” column of

table V calculates their portfolio turnovers. The Confident HL-portfolios deliver economically large

transaction-adjusted returns as well. For example, Avramov et al. (2020) extrapolate that a de-

duction of (0.005× turnover) from a portfolio’s realized return roughly approximates the portfolio’s

transaction-cost adjusted returns. Note that the Confident-HL portfolio turnovers are significantly

13See the following Wikipedia pages for the definitions of these measures: Omega, Sortino, and up-side potential.
14The Confident-HL strategies also reduce the drawdowns by more than 11% relative to the HL strategies.
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higher relative to the conventional HL portfolios. This result is expected, as they predominantly

take long-short positions on a much smaller subset of stocks, thereby requiring more rebalancing.

However, the Confident-HL portfolios’ trading-cost adjusted returns are substantially larger than

the conventional HL and corresponding matching portfolios. For example, the adjusted returns of

the EW(VW)-Confident-HL are 2.68% (1.89%), whereas those of the EW(VW)-HL are relatively

much lower, 1.26% (0.79%), respectively.

Confident-HL strategies vs t-sorted strategies. Rather than the Confident-HL strategies

that are based on conditional double sorting, one could alternatively form single sorted strategies

that take long (short) positions on the stocks with the relatively highest (lowest) t-stats (i.e., ratios

of risk premium forecasts and their standard errors). Such strategies need not deliver large OOS

returns because stocks with precise risk premium forecasts need not necessarily have high expected

returns. For example, consider a simple scenario where all stocks that have low risk premiums are

relatively precisely measured. Then the t-strategies take positions only on the subset of stocks with

low expected returns, thus delivering low OOS returns. The Confident-HL strategies, consistent

with the simulation results in tables (K) and (L), tackle this concern by first sorting on the return

forecasts.15

4.3. Validating why Confident-HL strategies outperform.

Recall that the Confident-HL strategies outperform because the ex-ante variances of risk pre-

mium forecasts predict the ex-post squared errors. Figure 2 confirms this result. Under each model,

I sort stocks into deciles every month based on their ex-ante variances. I then calculate the ex-

post OOS MSEs attained by these decile subsamples over the OOS period. Figure 2 reveals that

the ex-post OOS MSEs monotonically decrease with the level of ex-ante precision. The bottom

decile (i.e., decile-1), containing stock return forecasts that are most imprecisely measured by NN-3

(Lewellen, Lasso), attains an OOS MSE of 8.42% (6.38%, 7.59%). In contrast, the top decile (i.e.,

decile-10) with the most precise risk premium forecasts delivers significantly lower OOS MSE of of

15The t-sorted strategies perform on par with the HL strategies in terms of OOS Sharpe ratios. The results, which
have not been reported to conserve space, are available upon request.
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2.26% (2.52%, 1.57%).

While the monotonic relationship between the ex-ante variances and ex-post square errors holds

across all the three models, the steepness of the monotonicity increases with the model complexity,

from Lewellen to NN-3. This result is consistent with remark-1 that the magnitude with which

ex-ante variances predict ex-post squared forecast errors decreases with the model bias. Since

NN-3 return forecasts capture non linear non-linear interactions amongst a high-dimensional set

of predictors, they are relatively less biased than Lasso forecasts, which further are relatively less

biased than Lewellen forecasts. Thus, the monotonicity is relatively steeper for NN-3 forecasts.

Consequently, the relative gains provided by the Confident-HL strategies are also expected

to be in the decreasing order of the model biases. Figure 3 visually validates this result. The

gap between the cumulative holding period return curves of the Confident-HL strategies and the

Low-Confident-HL strategies is relatively wider for ML-based forecasts than for Lewellen-based

forecasts. For perspective, the difference between the annualized cumulative holding period returns

of the above two strategies is 16% for NN-3, 12% for Lasso, and 8% for Lewellen.

5. Dynamics of Ex-ante Precision

5.1. Time-Series Variation in Ex-ante Standard Errors

To understand the time-series dynamics of the ex-ante precision of risk premium predictions,

I compute the cross-sectional average of their ex-ante standard errors and call these “aggregate

standard errors”. Figure 3 plots the time-series of the aggregate standard errors. The series seem

to reflect time-varying financial market uncertainty. For example, Bloom (2009) and Baker, Bloom,

and Davis (2016) document that market uncertainty appears to jump up after major shocks, such

as Black Monday, the Dotcom Bubble, and the failure of Lehman Brothers. Consistent with these

studies, the aggregate standard errors spike after such shocks.

Table VI presents the time-series average of aggregate standard errors over the OOS period

and periods of shocks. Whereas the average monthly standard error across all periods is 1.06%, it is
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2.31% during crisis periods. Because many individual predictors (e.g., size, price trends, and stock

market volatility) in the NN-3 model substantially deviate from their usual distributions during

these crisis periods, resulting risk premium predictions will also be relatively imprecise. Thus, the

aggregate standard errors capture market uncertainty. For example, the standard errors are 38%

correlated with the widely-used uncertainty proxy, the monthly market return standard deviation

computed using daily data.

5.2. Cross-sectional Variation in Ex-ante Confidence

Table VII presents the cross-sectional properties of various ex-ante confidence sorted deciles. It

reveals that NN-3 confidently predicts stocks with small market capital, high book-to-market ratios

and high 1-year momentum returns. Because these characteristics associate with higher expected

returns, NN-3-based HL portfolios deliver more gains in the long-leg rather than the short-leg.

This result contrasts with the “arbitrage asymmetry” studies that argue, under trading frictions,

anomaly-based investment portfolios yield relatively more profits in the short-leg (e.g., Stambaugh,

Yu, and Yuan (2012)). Avramov et al. (2020) note similar observations, albeit examining ex-post

OOS returns of several ML-based investment strategies’ long-legs and short-legs.

Moreover, NN-3 confidently predicting risk premiums of small-sized stocks lends support to

Avramov et al. (2020), who argue that NN-3-based HL portfolios derive more economic gains from

microcaps. Table VII shows why. Because such stock risk premia are more confidently predicted,

HL portfolios containing microcaps yield relatively larger economic gains.

Importantly, I also find that a significant proportion of non-microcaps have confidently risk

premium predictions. Table VIII presents the results. It shows that 34% of the stocks with the

most precise risk premium predictions have market caps greater than the median size across all

individual stocks. Thus, NN-3-based Confident-HL portfolios yield impressive gains even on sub-

samples containing large-sized stocks.
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6. Conclusions

This paper estimates ex-ante confidence intervals of risk premium forecasts that are based on

a wide range of linear and ML models, including Lewellen, Lasso, and NNs. Incorporating ex-ante

confidence intervals, besides risk premium forecasts, into trading strategies is important, especially

for ML models, as it significantly improves OOS returns and Sharpe ratios. The reason is that ex-

ante variances of risk premium forecasts predict ex-post squared forecast errors, and thus they help

to minimize ex-post misclassification of stocks into inappropriate deciles, resulting in significant

gains in OOS returns and Sharpe ratios. Since the expected squared forecast errors equal the sum

of ex-ante variances and squared biases, the magnitude with which ex-ante variances predict ex-post

squared forecast errors increases (decreases) with the model complexity (bias). Thus, the relative

portfolio gains obtained by incorporating ex-ante confidence intervals are also in the decreasing

order of the model biases, with the most significant gains for NNs, followed by the penalized linear,

and then followed by Lewellen.

Consistent with this intuition, across all return forecasting models, the Confident-HL strategies

that discard stocks with imprecise risk premium forecasts significantly outperform existing bench-

mark strategies. The average annual return difference between the Confident-HL strategy and the

counterfactual matching strategy that rely solely on return forecasts and ignore the forecast confi-

dence intervals is 12.78% for NN-3, 10.70% for Lasso, and 8.68% for Lewellen, standardizing both

strategies to have the same variances. The outperformance is robust to transaction costs, downside

risks, excluding microcaps, and different model specification for the return residuals.

Economically, the Confident-HL strategies are interpretable as the trading strategies of am-

biguity averse investors with a max-min utility. The ex-ante variances of risk premium forecasts

exhibit significant variation across different return forecasting models, suggesting that a unified

asset pricing model may not be sufficient to precisely forecast risk premiums of all stocks.
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A. Appendix: Penalized Linear Models

This section presents the algorithms for obtaining the risk premium forecasts and their asso-

ciated confidence intervals under the Lasso and the linear models.

Algorithm 1 : LASSO-based risk premium forecasts and their Confidence Intervals

Given 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1, simulate iteratively

1. β|{σϵ, a0, a1, a2, τ21 , τ22 , . . . , τ2p , Z, R̄} ∼ Np

((
ZTZ +D∗−1

τ

)−1
ZT R̄, σ2

ϵ

(
ZTZ +D∗−1

τ

)−1
)
,

2. 1/τ2j = γj |{β, σ2
ϵ , a0, a1, a2, Z, R̄} ∼ inverse Gaussian

(√
λ1σ2

ϵ

β2
j
, λ2

1

)
I(γj) > 0, for j =

1, 2, . . . , p,

3. σ2
ϵ |{β, a0, a1, a2, τ21 , τ22 , . . . , τ2p , Z, R̄} ∼ inverted gamma

(
n−1+p

2 , 12(R̄− Zβ)
′
(R̄− Zβ) + 1

2β
′
D∗−1

τ β
)

4. a0, a1, a2|{σϵ, β, τ21 , τ22 , . . . , τ2p , Z, R̄} ∼ Np

(
h1

(
XT

e Xe

)−1
XT

e R̄, h2

(
XT

e Xe

)−1
)
,

where n is the total number of observations in the training sample; D∗
τ is a diagonal matrix

with diagonal elements (τ−2
i + λ2)

−1; Z represents the (n × p) matrix of all characteristics zit; R̄

is the (n × 1) matrix of orthogonalized returns {rit − Λift}; Xe is the error matrix with columns

{Sizei,t−1 × ft,Momi,t−1 × ft, Sizei,t−1 × ft}; h1 and h2 are hyperparameters that are estimated

using the validation sample. The algorithm is derived under the following prior for {a0, a1, a2, σ2
ϵ }:

a0, a1, a2|Xe, σ
2
ϵ ∼ N

(
0, ν

(
XT

e Xe

)−1
)
, P (σ2

ϵ ) ∝
1

σ2
ϵ

. (30)

When the model is a standard linear model with no penalty, the algorithm reduces to:

Algorithm 2 : Linear-based risk premium forecasts and their Confidence Intervals

Simulate iteratively

1. β|{σϵ, a0, a1, a2, τ21 , τ22 , . . . , τ2p , Z, R̄} ∼ Np

((
ZTZ

)−1
ZT R̄, σ2

ϵ

(
ZTZ

)−1
)
,

2. σ2
ϵ |{β, a0, a1, a2, τ21 , τ22 , . . . , τ2p , Z, R̄} ∼ inverted gamma

(
n−1+p

2 , 12(R̄− Zβ)
′
(R̄− Zβ)

)
3. a0, a1, a2|{σϵ, β, τ21 , τ22 , . . . , τ2p , Z, R̄} ∼ Np

(
h1

(
XT

e Xe

)−1
XT

e R̄, h2

(
XT

e Xe

)−1
)
.
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B. Appendix: Neural Networks

This section statistically validates the previously presented (co)variance estimators by showing

that dropout NNs and Bayesian NNs are identical. Gal and Ghahramani (2016) proved the dropout

NN and Bayesian NN equivalence by drawing upon the probability theory of Gaussian processes,

thereby limiting the potential audience for their work. So, I use a simple Bayesian model to provide

a straightforward but rigorous discussion of their central conclusions. In addition, I derive stock-

level and portfolio-level risk premium (co)variances and prove their frequentist consistency, which

Gal and Ghahramani (2016) do not discuss.

Bayesian Neural Network. Consider the Bayesian NN analogous to the previously consid-

ered NN-1, with the parametric form given by

ri,t+1 = b2 + ϕ(b1 + zitW1)W2 + ηi,t+1, Et(η
2
i,t+1) = σ2

η (31)

where the parameters {W1,W2} are random. σ2
η and b = ({b1, b2}) are assumed to be known for

simplicity.16 Denote the risk premiums by µit, where

µi,t = Et(rit+1) = b2 + ϕ(b1 + zitW1)W2. (32)

Specify the unknown weight matrices with the standard Gaussian priors,

[W1,W2] = N (0, l−2I), (33)

where I is the (NK + K) × (NK + K) identity matrix, and l is a hyperparameter. Then the

predictive density of stock i’s risk premium given a set of its raw predictors, z∗it, from the test data,

and the past training and validation data sets, denoted by {R,Z}, is given by

P (µ∗
i,t|z∗it, R, Z) =

∫
P (µ∗

i,t|z∗it, R, Z,W1,W2, b, σ
2
η)P (W1,W2|R,Z, b, σ2

η)dW1dW2, (34)

where P (W1,W2|R,Z, b, σ2
η) is the posterior density of the weight matrices given past data. Because

this density is not available in a closed-form, the literature uses one of the powerful methods known

as variational inference (VI) to directly approximate the intractable posterior.

The following discussion introduces VI and shows that approximating the posterior of the

weight matrices using VI and frequentist estimation the weights with dropout and L2 regulariza-

tions, as in (13), are equivalent. Thus, dropout NNs are approximations to Bayesian NNs.

Variational Inference (VI). To approximate a given posterior density P (W |data), VI first

considers a family of some known densities, {qθ(W )}, parameterized by θ, and then finds the optimal

16{b1, b2} could be treated random as well, in which case these parameters must be specified with Gaussian priors.
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parameter, θ∗, such that the Kullback-Leibler divergence between qθ∗(W ) and the true posterior

density is minimized. Thus, VI approximates the true posterior with qθ∗(W ), where the optimal

parameter θ∗ would be a function of data. The key is to consider a “good” family of densities

that guarantee the convergence (in total-variation) of qθ∗(W ) to the true posterior.17 For reference

in the finance literature, see Allena and Chordia (2022), who develop a specialized VI method

to approximate the intractable posterior density of true stock liquidity and prices, accounting for

tick-size induced rounding biases.

Variational Inference for Bayesian Neural Networks. To approximate the posterior of

the NN weight matrices, Gal and Ghahramani (2016) consider the following family of Gaussian

mixture densities containing two components:

q{M1,M2}(W1,W2) = qM1(W1)qM2(W2), with qM1(W1) =

Q∏
k=1

q1(w1q), qM2(W2) =
K∏
k=1

q2(w2q),

where qi(wiq) = pN (miq, σ
2Ii) + (1− p)N (0, σ2Ii) for i = 1, 2, (35)

with M1 = [(m1q)] and M2 = [(m2q)] being the “variational” parameters to be optimized. σ2

and p are known scalars. I1 (I2) is the identity matrix of dimension K (1); M1 and M2 are

matrices with the same dimensions as W1 and W2, respectively. Note that the variational density

qM1,M2(W1,W2) induces strong joint correlations over the rows of matrices Wi, which will help

capture the correlations among different risk premium predictions.

The optimal variational parameters {M∗
1 ,M

∗
2 } that best approximate the true posterior are

{M∗
1 ,M

∗
2 } = arg min

{M1,M2}
KL

(
qM1(W1)qM2(W2)||P (W1,W2|R,Zb, σ

2
η)
)
, (36)

where KL(x||y) represents the Kullback-Leibler divergence between x and y.

Bayesian and Dropout Neural Network Equivalence. It turns out that, given the

sample of training data, and as the number of neurons K → ∞, the optimal parameters in (36)

minimize the loss function that resembles a dropout NN’s frequentist-based loss function (14).

{M∗
1 ,M

∗
2 } = arg min

{M1,M2}

1

NTrNS

∑
t∈Tr

∑
i∈S

(
ri,t+1 − (b2 + ϕ(b1 + zit(p1itM1))(p2itM2))

)2
+ µ1||M1||2 + µ2||M2||2 + µ3||b1||2 + µ4||b2||2, (37)

where each element in p1it and p2it is an independent draw from a Bernoulli distribution with

parameter (p). {µ1, . . . µ4} are different scalars that are distinct functions of {l, σ2
η, σ

2}.

Thus, for an appropriate choice of the prior’s hyper-parameter l, the variational parameters,

17See Blei, Kucukelbir, and McAuliffe (2017) for an excellent review of VI, where they discuss: i) what family of
densities to consider? ii) how to obtain the optimal density in the family that best approximates the true posterior?
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{M∗
1 ,M

∗
2 }, that best approximate the (Bayesian) NN weight matrices’ posterior density are identical

to the frequentist estimation of the dropout NN’s weights. This implies

M∗
1 = W1,{λ,p}, and M∗

2 = W2,{λ,p}. (38)

Thus, predicting risk premiums using dropout NNs and Bayesian NNs are equivalent. As a

consequence, the following results follow.

Denote the VI-based approximated posterior densities of risk premiums by

PV I(µ
∗
i,t|z∗it, R, Z) =

∫
P (µ∗

i,t|z∗it, R, Z,W1,W2, b, σ
2
η)qM∗

1 ,M
∗
2
(W1,W2)dW1dW2, (39)

where the VI-based density PV I(µ
∗
i,t|z∗it, R, Z) approximates the true posterior P (µ∗

i,t|z∗it, R, Z);

{M∗
1 ,M

∗
2 } are given in (38), and qM∗

1 ,M
∗
2
(.) in (35), with optimal M∗

1 ,M
∗
2 substituted for M1,M2.

Theorem 2: The dropout-NN-based frequentist risk premium predictions (17) converge in proba-

bility to the posteriors mean of VI-based risk premium densities as the dropout samples D → ∞
and the number of neurons K → ∞, i.e.,

E∗
it,Dropout

p→ EV I(µ
∗
i,t), (40)

where EV I(µ
∗
i,t) denotes the expectation of PV I(µ

∗
i,t|z∗it, R, Z).

Theorem 3: The dropout-based estimated variances of stock-level risk premiums (18) converge

in probability to the variances of risk premiums’ VI-based approximated posterior densities as the

dropped-out samples D → ∞ and the number of neurons K → ∞, i.e.,

V̂ art(E
∗
it,Dropout) =

1

D

D∑
d=1

Êi,d,t −
1

D

D∑
d=1

Êi,d,t

2

p→ V arV I(µ
∗
i,t), (41)

where Êi,d,t is given in (19); V arV I(µ
∗
i,t) denotes the variance of PV I(µ

∗
i,t|z∗it, R, Z). .

Now, consider the VI-approximated joint posteriors of a given set of S risk premiums

PV I(µ
∗
1,t, µ

∗
2,t, . . . , µ

∗
S,t|z∗it, R, Z) =

∫
P (µ∗

1,t, µ
∗
2,t, . . . , µ

∗
S,t|z∗it, R, Z,W1,W2, b, σ

2
η)qM∗

1 ,M
∗
2
(W1,W2)dW1dW2,

(42)

where the VI-based density PV I(µ
∗
1,t, µ

∗
2,t, . . . , µ

∗
S,t|z∗it, R, Z) approximates the true posterior

P (µ∗
1,t, µ

∗
2,t, . . . , µ

∗
S,t|z∗it, R, Z); {M∗

1 ,M
∗
2 } are given in (38), and q(.) in (35).

Theorem 4: The dropout-based estimated covariances of stock-level risk premiums (20) converge

in probability to the covariances of risk premiums’ VI-based approximated posterior densities as the
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dropped-out samples D → ∞ and the number of neurons K → ∞, i.e.,

Ĉovart(E
∗
it,Dropout, E

∗
jt,Dropout)

p→ CovarV I(µ
∗
i,t, µ

∗
j,t), , (43)

where CovarV I(µ
∗
i,t, µ

∗
j,t) denotes the covariance between µ∗

i,t, µ
∗
j,t based on the joint density (42).

Theorem 5: The dropout-based estimated variances of portfolio-level risk premiums (21) converge

in probability to variances of the portfolio-level risk premiums’ VI-based approximated posterior

densities as the dropped-out samples D → ∞ and the number of neurons K → ∞, i.e.,

V̂ art(E
∗
Pt,Dropout)

p→ V arV I(µ
∗
Pt,Dropout), (44)

where µ∗
Pt,Dropout =

∑S
i=1 ωP,i,tµ

∗
i,t; ωP,i,t presents the weights that determine the portfolio P ;

V arV I(µ
∗
Pt,Dropout) denotes the posterior variance of µ∗

Pt,Dropout based on the joint density (42).

B1. Frequentist consistency of dropout-based estimators

Note that theorems 2-5 show that the dropout-based risk premium predictions and their co-

variances correspond to the VI-based Bayesian posterior means and covariances, respectively. The

following result shows that the dropout-based estimators exhibit frequentist consistency.

Theorem 6: Under the assumptions 1-3 in Internet appendix D, as the number of neurons K → ∞
and in the limit of infinite data, for a given finite set of S stock risk premiums∣∣∣∣∣

∣∣∣∣PV I(µ
∗
1,t, µ

∗
2,t, . . . , µ

∗
S,t|z∗it, R, Z)−MVN

(
[µ̂1,t, . . . , µ̂S,t], n

−1I(µ1,t, . . . , µS,t)
)∣∣∣∣
∣∣∣∣∣
TV

p→ 0, (45)

where MVN denotes the multivariate normal density; [µ̂1,t, . . . , µ̂S,t] represents the maximum likeli-

hood estimate (MLE) of true risk premiums; I(µ1,t, . . . , µS,t) denotes the Fisher information matrix

evaluated at the true risk premiums; n−1 is the total number of observations in the training data.

Theorem 6 shows that Bayesian credible sets formed using the dropout-based or the VI-based

risk premium predictions and their (co)variances will asymptotically be confidence intervals ob-

tained using frequentist MLE estimators and their (co)variances. Thus, this paper’s dropout-based

covariance estimators are justified from the frequentist standpoint.
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Table I: Performance of Various Trading Strategies: All Stocks
This table reports the performance of different long-short portfolios that are constructed using monthly stock return

forecasts and their estimated confidence intervals over the 34-year out-of-sample (OOS) period January 1987- February

2020. Panel A presents the equal-weighted strategies and Panel B shows the value-weighted strategies. Expected

return forecasts and their respective confidence intervals are simultaneously estimated under each of the Lewellen,

Lasso, and NN-3 models. HL strategies are the conventional spread portfolios that exploit information only from the

return forecasts but not their confidence intervals. These strategies take long (short) positions on the top (bottom)

decile of stocks with relatively highest (lowest) return forecasts. In contrast, Confident-HL strategies use information

from both return forecasts and their confidence intervals by taking long (short) positions only on the subset of

stocks in the decile of highest (lowest) risk premium forecasts that have relatively more confident return predictions.

Similarly, Low-Confident-HL strategies take equal-weighted or value-weighted long (short) positions on the subset of

stocks in the decile of highest (lowest) risk premium forecasts that are relatively imprecisely measured. Two other

benchmark strategies are also considered. 1%-HL strategies take long (short) positions on the top (bottom) 1% of

stocks that have relatively highest (lowest) return forecasts. These strategies contain the same number of stocks

as Confident-HL strategies but use the information only from return forecasts, ignoring their confidence intervals.

Low-Ivol-HL strategies take long (short) positions only on the subset of stocks in the decile of highest (lowest) risk

premium forecasts that have relatively low idiosyncratic volatility (rather than this paper’s variance measures of

return forecasts). See section 4.4.1.4.1.4 for a detailed description of the portfolios. All portfolio returns are also

adjusted for Fama-French 5-factors plus momentum (FF-5+UMD). The “avg ret” column shows the average realized

returns. The “α” columns indicate abnormal returns. The “t” columns denote the t-stats of “average returns” and

“α”. The “SR” and “IR” columns represent the annualized Sharpe and Information ratios, respectively.

Panel A: Equal-weighted Strategies Panel B: Value-weighted Strategies

FF-5+Mom FF-5+Mom

Model Strategy avg ret Sh α IR avg ret Sh α IR

Lewellen

Confident-HL 2.40% 1.05 1.86% 1.26 1.75% 0.77 1.05% 0.65

HL 1.21% 0.81 0.79% 0.76 0.39% 0.34 0.23% 0.26

Low-Confident-HL 0.36% 0.19 0.49% 0.27 0.34% 0.19 0.36% 0.24

1%-HL 1.91% 0.83 1.37% 0.69 0.25% 0.11 -0.23% -0.12

Low-ivol-HL 1.24% 0.83 1.07% 0.88 0.16% 0.12 0.14% 0.12

Lasso

Confident-HL 2.71% 1.28 2.54% 1.29 1.76% 0.77 1.44% 0.65

HL 1.67% 1.12 1.24% 1.03 0.60% 0.43 0.16% 0.16

Low-Confident-HL 0.49% 0.25 0.31% 0.17 -0.09% -0.04 -0.43% -0.21

1%-HL 1.98% 0.94 1.54% 0.81 0.84% 0.37 0.53% 0.26

Low-ivol-HL 1.03% 0.56 0.45% 0.31 0.42% 0.24 -0.18% -0.13

NN-3

Confident-HL 3.84% 1.78 3.72% 1.81 2.70% 1.26 2.49% 1.26

HL 2.21% 1.36 2.13% 1.36 1.29% 0.78 0.97% 0.64

Low-Confident-HL 1.43% 0.68 1.40% 0.69 0.86% 0.33 0.63% 0.26

1%-HL 3.07% 1.42 2.96% 1.41 1.76% 0.83 1.59% 0.79

Low-ivol-HL 1.24% 0.83 1.07% 0.88 0.16% 0.12 0.14% 0.12
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Table II: Statistical Comparison of Various Trading Strategies
This table conducts pairwise statistical comparisons of the out-of-sample (OOS) performance of various long-short

portfolios that are constructed using monthly stock return forecasts and their estimated confidence intervals over

the 34-year out-of-sample (OOS) period January 1987- February 2020. The tests are based on the moving block

bootstrap procedure discussed in the Internet Appendix (C), with a block-length of 12. The Strategy column shows

the comparing pair of portfolios. The Sharpe2 columns show the annualized Sharpe ratio squared differences between

the investment portfolios. The IR2 columns show the annualized information ratio squared differences between the

investment portfolios. The numbers in parenthesis are p-values. *, ** and *** denote significance at the 1%, 5% and

10% levels, respectively. See table I and section 4.4.1.4.1.4 for a description of the portfolios.

Equal Weighted Value-Weighted

Raw returns FF-5+Mom Raw returns FF-5+Mom

Model Strategy avg ret Sh2 α IR2 avg ret Sh2 α IR2

Lewellen Confident-HL −

HL 1.2%∗∗∗

(0.000)
0.45∗∗∗
(0.001)

1.07%∗∗∗

(0.001)
1∗∗∗

(0.000)
1.37%∗∗∗

(0.004)
0.47∗∗∗
(0.004)

0.0.83%∗∗∗

(0.0002)
0.35∗∗∗
(0.003)

Low-Confident-HL 2.05%∗∗∗

(0.000)
1.06∗∗∗
(0.002)

1.14%∗∗∗

(0.007)
1.5∗∗∗
(0.000)

1.38%∗∗∗

(0.002)
0.55∗∗∗
(0.003)

0.69%∗∗∗

(0.04)
0.36∗∗∗
(0.002)

1%-HL 0.5%
(0.27)

0.41
(0.001)

∗∗∗ 0.49%
(0.175)

1.11∗∗∗
(0.001)

1.5%∗∗∗

(0.008)
0.58∗∗∗
(0.000)

1.28∗∗∗
(0.003)

0.41∗∗∗
(0.002)

Low-Ivol-HL 1.16%∗∗∗

(0.002)
0.41∗∗∗
(0.002)

0.8%∗∗

(0.003)
0.8∗∗∗
(0.001)

1.59%∗∗∗

(0.001)
0.57∗∗∗
(0.001)

0.92%∗∗∗

(0.000)
0.41∗∗∗
(0.000)

Lasso Confident-HL −

HL 1.04%∗∗∗

(0.000)
0.40∗∗∗
(0.000)

1.29%∗∗∗

(0.000)
0.61∗∗∗
(0.000)

1.17%∗∗∗

(0.001)
0.41∗∗∗
(0.001)

1.28%∗∗∗

(0.000)
0.39∗∗∗
(0.000)

Low-Confident-HL 2.22%∗∗∗

(0.000)
1.59∗∗∗
(0.000)

2.22%∗∗∗

(0.001)
1.63∗∗∗
(0.000)

1.85%∗∗∗

(0.000)
0.6∗∗∗
(0.000)

1.87∗∗∗
(0.000)

0.37∗∗∗
(0.002)

1%-HL 0.73%∗∗

(0,03)
0.77∗∗∗
(0.000)

1.00%∗∗

(0.011)
1∗∗∗

(0.000)
0.92%∗∗

(0.048)
0.46∗∗∗
(0.001)

0.91%∗∗

(0.041)
0.35∗∗∗
(0.005)

Low-Ivol-HL 1.68%∗∗∗

(0.000)
1.33∗∗∗
(0.000)

2.09%∗∗∗

(0.000)
1.57∗∗∗
(0.000)

1.34%∗∗∗

(0.004)
0.54∗∗∗
(0.000)

1.62%∗∗∗

(0.000)
0.4∗∗∗
(0.000)

NN-3 Confident-HL −

HL 1.63%∗∗∗

(0.000)
1.32∗∗∗
(0.000)

1.59%∗∗∗

(0.000)
1.4∗∗∗
(0.000)

1.42%∗∗∗

(0.001)
0.99∗∗∗
(0.000)

1.52%∗∗∗

(0.000)
1.17∗∗∗
(0.000)

Low-Confident-HL 2.41%∗∗∗

(0.000)
2.7∗∗∗
(0.000)

2.32%∗∗∗

(0.000)
2.79∗∗∗
(0.000)

1.84%∗∗∗

(0.000)
1.49∗∗∗
(0.000)

1.86%∗∗∗

(0.002)
1.52∗∗∗
(0.000)

1%-HL 0.77%∗∗

(0.023)
1.14∗∗∗
(0.000)

0.76%∗∗

(0.019)
1.26∗∗∗
(0.000)

0.94%∗∗

(0.015)
0.92∗∗∗
(0.000)

0.9%∗∗

(0.025)
0.96∗∗∗
(0.000)

Low-Ivol-HL 2.6%∗∗∗

(0.000)
2.47∗∗∗
(0.000)

2.65%∗∗∗

(0.000)
2.48∗∗∗
(0.000)

2.54%∗∗∗

(0.000)
1.58∗∗∗
(0.000)

2.36%∗∗∗

(0.000)
1.57∗∗∗
(0.000)
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Table III: Performance of Various Trading Strategies: Non-Microcaps
This table reports the performance of different long-short portfolios that are constructed using monthly stock return

forecasts and their estimated confidence intervals over the 34-year out-of-sample (OOS) period January 1987- February

2020. Every period, the sample excludes microcap stocks with market capital smaller than the 20th NYSE size

percentile. Panel A presents the equal-weighted strategies and Panel B shows the value-weighted strategies. Expected

return forecasts and their respective confidence intervals are simultaneously estimated under each of the Lewellen,

Lasso, and NN-3 models. HL strategies are the conventional spread portfolios that exploit information only from the

return forecasts but not their confidence intervals. These strategies take long (short) positions on the top (bottom)

decile of stocks with relatively highest (lowest) return forecasts. In contrast, Confident-HL strategies use information

from both return forecasts and their confidence intervals by taking long (short) positions only on the subset of

stocks in the decile of highest (lowest) risk premium forecasts that have relatively more confident return predictions.

Similarly, Low-Confident-HL strategies take equal-weighted or value-weighted long (short) positions on the subset of

stocks in the decile of highest (lowest) risk premium forecasts that are relatively imprecisely measured. Two other

benchmark strategies are also considered. 1%-HL strategies take long (short) positions on the top (bottom) 1% of

stocks that have relatively highest (lowest) return forecasts. These strategies contain the same number of stocks

as Confident-HL strategies but use the information only from return forecasts, ignoring their confidence intervals.

Low-Ivol-HL strategies take long (short) positions only on the subset of stocks in the decile of highest (lowest) risk

premium forecasts that have relatively low idiosyncratic volatility (rather than this paper’s variance measures of

return forecasts). See section 4.4.1.4.1.4 for a detailed description of the portfolios. All portfolio returns are also

adjusted for Fama-French 5-factors plus momentum (FF-5+UMD). The “avg ret” column shows the average realized

returns. The “α” columns indicate abnormal returns. The “t” columns denote the t-stats of “average returns” and

“α”. The “SR” and “IR” columns represent the annualized Sharpe and Information ratios, respectively.

Panel A: Equal-weighted Strategies Panel B: Value-weighted Strategies

FF-5+Mom FF-5+Mom

Model Strategy avg ret Sh α IR avg ret Sh α IR

Lewellen

Confident-HL 1.76% 0.82 1.21% 0.89 1.36% 0.61 0.83% 0.53

HL 0.92% 0.62 0.40% 0.42 0.61% 0.42 0.33% 0.33

Low-Confident-HL -0.08% -0.05 -0.15% -0.10 0.70% 0.36 0.54% 0.32

1%-HL 1.26% 0.58 0.54% 0.32 0.92% 0.41 0.45% 0.25

Low-ivol-HL 0.77% 0.49 0.63% 0.51 0.52% 0.30 0.47% 0.33

Lasso

Confident-HL 1.72% 0.86 1.23% 0.80 1.48% 0.73 1.02% 0.63

HL 0.79% 0.55 0.37% 0.45 0.77% 0.50 0.33% 0.39

Low-Confident-HL 0.05% 0.03 -0.38% -0.25 0.47% 0.26 -0.10% -0.06

1%-HL 0.41% 0.21 0.08% 0.06 0.81% 0.36 0.39% 0.22

Low-ivol-HL 0.67% 0.33 0.16% 0.09 0.71% 0.36 0.27% 0.17

NN-3

Confident-HL 2.19% 1.30 1.88% 1.16 2.00% 1.05 1.56% 0.86

HL 1.33% 0.82 0.82% 0.55 1.11% 0.70 0.62% 0.42

Low-Confident-HL 0.99% 0.52 0.62% 0.34 0.87% 0.40 0.55% 0.27

1%-HL 1.15% 0.68 0.78% 0.50 0.91% 0.48 0.54% 0.30

Low-ivol-HL 1.29% 0.80 0.86% 0.57 1.22% 0.71 0.80% 0.50
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Table IV: Statistical Comparison of Various Trading Strategies: Non-Microcaps
This table conducts pairwise statistical comparisons of the out-of-sample (OOS) performance of various long-short

portfolios that are constructed using monthly stock return forecasts and their estimated confidence intervals over

the 34-year out-of-sample (OOS) period January 1987- February 2020. The tests are based on the moving block

bootstrap procedure discussed in the Internet Appendix (C), with a block-length of 12. The Strategy column shows

the comparing pair of portfolios. The Sharpe2 columns show the annualized Sharpe ratio squared differences between

the investment portfolios. The IR2 columns show the annualized information ratio squared differences between the

investment portfolios. The numbers in parenthesis are p-values. *, ** and *** denote significance at the 1%, 5% and

10% levels, respectively. See table I and section 4.4.1.4.1.4 for a description of the portfolios.

Equal Weighted Value-Weighted

Raw returns FF-5+Mom Raw returns FF-5+Mom

Model Strategy avg ret Sh2 α IR2 avg ret Sh2 α IR2

Lewellen Confident-HL −

HL 0.84%∗∗∗

(0.000)
0.28∗∗∗
(0.006)

0.81%∗∗∗

(0.000)
0.61∗∗∗
(0.000)

0.75%∗∗

(0.031)
0.19∗∗
(0.018)

0.5%∗∗

(0.046)
0.17∗∗
(0.038)

Low-Confident-HL 1.84%∗∗∗

(0.000)
0.67∗∗∗
(0.000)

1.37%∗∗∗

(0.000)
0.78∗∗∗
(0.000)

0.66%
(0.215)

0.24∗∗
(0.022)

0.29%
(0.34)

0.18∗∗
(0.031)

1%-HL 0.5%
(0.127)

0.31∗∗∗
(0.003)

0.67%∗∗

(0.048)
0.69∗∗∗
(0.000)

0.44%
(0.14)

0.2∗∗
(0.015)

0.39%
(0.21)

0.22∗∗
(0.028)

Low-Ivol-HL 1.00%∗∗∗

(0.000)
0.43∗∗∗
(0.000)

0.58%∗∗

(0.013)
0.53∗∗∗
(0.000)

0.84%∗∗

(0.032)
0.27∗∗∗
(0.01)

0.36%
(0.21)

0.17∗∗
(0.033)

Lasso Confident-HL −

HL 0.92%∗∗∗

(0.000)
0.36∗∗∗
(0.000)

0.85%∗∗∗

(0.000)
0.43∗∗∗
(0.000)

0.71%∗∗∗

(0.002)
0.29∗∗∗
(0.001)

0.69%∗∗∗

(0.003)
0.25∗∗∗
(0.001)

Low-Confident-HL 1.66%∗∗∗

(0.000)
1.59∗∗∗
(0.000)

1.61%∗∗∗

(0.000)
0.57∗∗∗
(0.000)

1.01%∗∗∗

(0.001)
0.47∗∗∗
(0.000)

1.12%∗∗

(0.000)
0.4∗∗∗
(0.000)

1%-HL 1.3%∗∗∗

(0.000)
0.77∗∗∗
(0.000)

1.14%∗∗∗

(0.000)
0.63∗∗∗
(0.000)

0.76%∗∗

(0.015)
0.41∗∗∗
(0.001)

0.68%∗∗

(0.02)
0.35∗∗∗
(0.000)

Low-Ivol-HL 1.05%∗∗∗

(0.000)
1.33∗∗∗
(0.000)

1.07%∗∗∗

(0.000)
0.63∗∗∗
(0.000)

0.77%∗∗

(0.016)
0.41∗∗∗
(0.000)

0.75%∗∗

(0.018)
0.37∗∗∗
(0.001)

NN-3 Confident-HL −

HL 0.86%∗∗∗

(0.000)
1.01∗∗∗
(0.000)

1.06%∗∗∗

(0.000)
1.04∗∗∗
(0.000)

0.88%∗∗∗

(0.000)
0.61∗∗∗
(0.000)

0.94%∗∗∗

(0.000)
0.56∗∗∗
(0.000)

Low-Confident-HL 1.2%∗∗∗

(0.000)
1.41∗∗∗
(0.000)

1.26%∗∗∗

(0.000)
1.23∗∗∗
(0.000)

1.12%∗∗∗

(0.002)
0.94∗∗∗
(0.000)

1.00%∗∗∗

(0.003)
0.66∗∗∗
(0.000)

1%-HL 1.04%∗∗∗

(0.004)
0.75∗∗∗
(0.000)

1.1%∗∗∗

(0.001)
1.1∗∗∗
(0.000)

1.09%∗∗∗

(0.008)
0.87∗∗∗
(0.000)

1.02%∗∗

(0.004)
0.65∗∗∗
(0.000)

Low-Ivol-HL 1.42%∗∗∗

(0)
1.04∗∗∗
(0.000)

1.01%∗∗∗

(0.000)
1.03∗∗∗
(0.000)

1.48%∗∗∗

(0.000)
0.6∗∗∗
(0.000)

0.75%∗∗∗

(0.005)
0.49∗∗∗
(0.000)

43



Figure 1. Log Cumulative OOS returns of NN-3-based trading strategies

(a) Lewellen-based strategies

(b) Lasso-based strategies

(c) NN-3-based strategies

Note: This figure presents the log cumulative OOS returns of various trading strategies.

44



Figure 2. Ex-ante Confidence and Ex-post OOS-MSE

Note: This figure confirms that the ex-ante precision of risk premium forecasts and their realized out-of-sample

precision are monotonically related across all the three return forecasting models. Every period stocks are first sorted

into deciles based on their risk premium forecasts. Each of these ten predicted-return deciles are further sorted into

deciles based on the confidence levels of their risk premium forecasts. Ex-ante Precision Decile 10 (1) comprises the

top (bottom) 10% stocks with the lowest (highest) confidence levels in forecasting risk premiums, combined across

all the ten predicted-return deciles. The y-axis represents the ex-post OOS MSEs attained by the ex-ante precision

deciles.
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Table V: Transaction Costs and Higher-Moment Adjusted Performance of Various Strategies
This table reports the transaction costs and higher-moment-risk-adjusted performance of different long-short portfolios

that are constructed using monthly stock return forecasts and their estimated confidence intervals over the 34-year

out-of-sample (OOS) period January 1987- February 2020. The Turnover column presents a portfolio’s average

monthly percentage change in holdings (i.e., turnover). A deduction of (0.005×Turnover) from a portfolio’s realized

return roughly approximates its transaction-cost-adjusted returns. The Drawdown, Omega, and Sortino columns

respectively represent the maximum drawdown, Omega, and Sortino ratios. These ratios measure the higher-moment-

risk-adjusted performance of portfolios, explicitly penalizing losses more than realizing gains. See table I and section

4.4.1.4.1.4 for a description of the portfolios.

Equal Weighted Value Weighted

Model Strategy Turnover Drawdown Omega Sortino Turnover Drawdown Omega Sortino

Lewellen

Confident-HL 0.85 0.88 2.43 0.52 0.90 0.88 1.88 0.41

HL 0.51 0.55 2.03 0.39 0.46 0.79 1.30 0.15

Low-Confident-HL 0.85 2.13 1.18 0.09 0.91 0.95 1.17 0.09

1%-HL 0.71 0.76 1.98 0.40 0.75 3.26 1.09 0.05

Low-Ivol-HL 0.6 0.51 2.03 0.45 0.76 1.19 1.10 0.05

Lasso

Confident-HL 1.3 0.80 3.06 0.78 1.19 0.69 1.91 0.45

HL 0.79 0.87 2.97 0.61 0.68 0.87 1.46 0.20

Low-Confident-HL 1.16 1.55 1.24 0.11 1.40 3.27 0.96 -0.01

1%-HL 0.84 1.16 2.21 0.48 0.92 1.79 1.34 0.16

Low-Ivol-HL 0.76 1.31 1.65 0.23 0.78 0.98 1.23 0.10

NN-3

Confident-HL 1.78 0.32 4.53 1.47 1.86 0.50 2.79 0.83

HL 1.19 0.37 3.34 0.98 1.35 0.55 1.92 0.42

Low-Confident-HL 1.81 1.05 1.73 0.36 1.83 1.42 1.32 0.17

1%-HL 1.78 0.67 3.42 1.04 1.86 0.67 1.94 0.45

Low-Ivol-HL 1.86 0.51 2.03 0.45 1.73 1.19 1.10 0.05
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Figure 3. Time-Series Variation in Standard Errors of NN-based Risk Premium Forecasts

Note: This figure plots the time-series of aggregate standard errors, which are the cross-sectional

averages of NN-3-based risk premium predictions’ ex-ante standard errors . The labels, such as

“Black Monday”, “Russian Default”, represent periods of major shocks.
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Table VI: Aggregate Standard Errors of NN-3-based Risk Premia
This table reports time-series averages of aggregate standard errors over different periods. The aggregate standard

errors equal the cross-sectional averages of NN-based risk premium predictions’ standard errors.

Panel A: Overall Period

Event Standard Error Time Period

Overall Data 1.06% Jan 1987 to Dec 2016

Panel B: Periods of major Shocks

Event Standard Error Time Period

Black Monday 2.05% Oct 1987 to Nov 1987

Russian LTCM Defualt 3.08% Sep 1998 to Sep 1998

Dotcom Bubble 2.24% Apr 2000 to Apr 2000

Worldcom and Enron 2.33% Jul 2002 to Sep 2002

Gulf War 2.75% Mar 2003 to Mar 2003

Quant Crisis 1.97% Aug 2007 to Aug 2007

Lehman Bankruptcy 2.00% Oct 2008 to Oct 2008

The 2011 Debt-Ceiling 2.32% Aug 2011 to Aug 2011

Covid shock in the US 3.01% March 2029 to March 2020

Crisis Period Average 2.37%

Non-Crisis Period Average 1.07%
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Table VII: Cross-sectional Characteristics of Confidence-sorted Deciles
This table reports average characteristics of various confidence-sorted deciles. Every month, stocks are sorted

into deciles according to their ex-ante confidence of NN-3-based risk premium predictions. Each row under All

Stocks Columns represents the equal-weighted average of various characteristics across all stocks in the corresponding

precision-sorted decile. The table also presents the characteristics of confidence-sorted portfolios from the long and

short legs, separately. Every period stocks are first sorted into deciles according to their NN-based risk premia, with

H and L representing the deciles containing the highest and lowest predicted returns. Both H and L are further parti-

tioned into deciles according to their ex-ante confidence. The Long-Leg columns represent the average characteristics

of confidence-sorted deciles of H, whereas Short-Leg columns show those of L.

Ex-ante Precision

Decile

All Stocks Long-Leg Short-Leg

Size BM mom12m Size BM mom12m Size BM mom12m

1 1811 1.62 0.01 816 3.45 0.23 1939 0.76 -0.11

2 1836 1.76 0.05 810 3.37 0.23 2003 0.88 -0.08

3 1838 1.97 0.07 793 3.33 0.24 2084 0.92 -0.06

4 1788 2.12 0.08 877 3.20 0.25 2043 0.99 -0.06

5 1750 2.29 0.10 846 3.58 0.26 2102 1.04 -0.06

6 1627 2.39 0.11 805 3.58 0.26 2049 1.03 -0.05

7 1521 2.54 0.12 829 3.50 0.29 2188 0.97 -0.05

8 1394 2.62 0.13 798 3.56 0.31 2206 0.99 -0.05

9 1233 2.72 0.16 706 3.74 0.34 2283 0.89 -0.05

10 988 3.16 0.22 628 4.53 0.42 2347 1.02 -0.07
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Table VIII: Characteristic Distributions of the Most Confident Stocks
This table reports various characteristic distributions of stocks in the top decile with the most confident risk premium
predictions. Every month, stocks are sorted into deciles according to their ex-ante confidence. The first row of the
Size column presents the proportion of stocks in the top-most confident decile that have market capital lower than
the 10th percentile of sizes across all stocks. Similarly, the second (third, . . . , tenth) row of the Size column shows
the proportion of stocks in the top-most confident decile that have market capital between the 10th and 20th (20th

and 30th, . . . , 90th and 100th) percentile of sizes across all stocks. The BM, mom12m, and illiq columns represent
equivalent proportions for book-to-market, 1-year momentum and illiquidity characteristics.

Decile Size BM mom12m illiq

1 (Low-Characteristic) 18.50% 10.02% 9.58% 7.23%

2 15.05% 8.21% 8.33% 6.94%

3 12.61% 8.34% 7.98% 7.03%

4 10.38% 11.39% 8.25% 7.53%

5 8.96% 14.09% 7.89% 8.14%

6 7.92% 11.61% 7.96% 9.21%

7 7.17% 7.64% 9.47% 10.61%

8 6.62% 10.55% 10.88% 12.36%

9 6.56% 13.43% 13.07% 14.54%

10 (High-Characteristic) 6.51% 15.10% 17.04% 16.50%
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C. Internet Appendix: Ex-ante Estimation Uncertainty and

Ex-post OOS Inferences

To statistically compare the ex-post OOS performance of competing trading strategies, this

section discusses the DM tests and the bootstrap tests of Allena (2021) (see also Allena and Robotti

(2021)).

C1. Comparing OOS returns of HL strategies.

Consider any two competing model-based HL strategy returns; HL1t and HL2t, where HLit

denotes the OOS return of the ith at time time t. Denoting the return differentials (HL1t−HL2t) =

∆t, the DM test-statistic under the null of equal return means is given by

√
T

∑T
t=1∆t/T

se(∆t)
∼ N(0, 1), (46)

where se(∆t) denotes a heteroskedasticity and autocorrelation consistent estimator of the return

differentials ∆t.

DM emphasized that their tests deliver asymptotically valid inferences only when the differen-

tials are covariance stationary. However, Allena (2021) documents that the ex-ante uncertainties of

risk premium predictions would cause the ex-post OOS return differentials to violate the covariance

stationarity assumption, thus rendering the DM inferences inadequate. He generalizes the DM tests

using a moving block bootstrap procedure that delivers asymptotically valid inferences even when

the OOS return differentials violate covariance stationarity.

Moving Block Bootstrap tests of equal return means. Consider a series of return

differentials {∆t}Tt=1. Then the procedure for obtaining critical values, or p-values, under the null

hypothesis H0 : E( 1
T

∑T
t=1∆t) = 0 is as follows.

1. Choose a block-size l. For each iteration i,

(a) draw n = (T/l) random numbers, {bi}ni=1, from the set {1, 2, . . . , T−l} with replacement,

(b) draw a block bootstrap sample Di={∆b1 ,∆b1+1, . . .∆b1+l−1; ∆b2 ,∆b2+1, . . .∆b2+l−1;

. . . ; ∆bn ,∆bn+1, . . .∆bn+l−1}, where Di contains a total number of T differentials, and

(c) impose the null and compute the bootstrap-based t-ratio, ti =
(
D̄i − ∆̄

)
/std(Di), where

D̄i and std(Di) are the sample mean and standard deviation of Di, respectively. ∆̄ is

the sample mean of the original loss differentials.

2. Repeat step (1) many times. The p-value equals the proportion of times the absolute value of

ti is greater than the original sample’s realized absolute t-ratio, which equals t =
(
∆̄
)
/std(∆),

where std(∆) is the sample standard deviation of the differentials {∆j}Tj=1.
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The optimal block-size l, shown in the literature to be O(T−1/2), is close to 2 years of data on

a sample over 30 years. Thus, the empirical section uses a block size of 24. However, the results

are quite similar across other block lengths of 6, 12, 18, and 36.

C2. Comparing Sharpe ratios.

Allena (2021) further shows that the above procedure could be generalized to compare OOS

Sharpe ratios of any two model-based investment strategies. Let {HL1t} and {HL2t} be two such

series, with squared Sharpe ratios

Sh2i =
( 1
T

∑T
t=1HLit)

2

1
T

∑T
t=1(HLit − 1

T

∑T
t=1HLit)2

, for i = 1, 2. (47)

The p-value for testing the null of equal squared Sharpe ratios, H0 : E(Sh21) = E(Sh22), can be

computed as follows.

1. Choose a block-size l. For each iteration i.

(a) draw n = (T/l) random numbers, {bi}ni=1, from the set {1, 2, . . . , T−l} with replacement,

(b) normalize the returns to impose the null,

HL∗
it =

√
T (HLit −

1

T

T∑
t=1

HLit)/

√√√√ T∑
t=1

(HLit −
1

T

T∑
t=1

HLit)2, (48)

(c) draw a block bootstrap sample {Hki} from the normalized returns;

(d) compute the bootstrap-based squared Sharpe ratio difference, Sh21i − Sh22i, where

Sh2ki =
( 1
T

∑T
t=1Hkit)

2

1
T

∑T
t=1(Hkit − 1

T

∑T
t=1Hkit)2

, for k = 1, 2, where Hkit = tthelement of Hki.

2. Repeat step (1) many times. The p-value equals the proportion of times the absolute value

of (Sh21i − Sh22i) is greater than the absolute value of Sh21 − Sh22.
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D. Internet Appendix: Robustness Checks

Figure A. Out-of-Sample (OOS) Performance of Equal-weighted Deciles Based on NN-3 Predictions.

Figure B. Out-of-Sample (OOS) Performance of Value-weighted Deciles Based on NN-3 Predictions.

Note: Figure A (B) presents the performance of equal-weighted (value-weighted) prediction-

sorted portfolios over the 30-year out-of-sample. At each period, stocks are sorted into deciles

according to their NN-3-based risk premium predictions. Decile-10 (decile-1) comprises the top

3



(bottom) 10% stocks with the lowest (highest) return predictions. The top figure shows the average

monthly returns of each decile, whereas the bottom represents their annualized Sharpe ratios.

4



Table A: Performance of Various Trading Strategies under the IID Assumption: All Stocks
This table reports the performance of different long-short portfolios that are constructed using monthly stock return

forecasts and their estimated confidence intervals over the 34-year out-of-sample (OOS) period January 1987- February

2020. Panel A presents the equal-weighted strategies and Panel B shows the value-weighted strategies. Expected

return forecasts and their respective confidence intervals are simultaneously estimated under each of the Lewellen,

Lasso, and NN-3 models. The confidence intervals are estimated under the assumption that the model residuals

are iid. HL strategies are the conventional spread portfolios that exploit information only from the return forecasts

but not their confidence intervals. These strategies take long (short) positions on the top (bottom) decile of stocks

with relatively highest (lowest) return forecasts. In contrast, Confident-HL strategies use information from both

return forecasts and their confidence intervals by taking long (short) positions only on the subset of stocks in the

decile of highest (lowest) risk premium forecasts that have relatively more confident return predictions. Similarly,

Low-Confident-HL strategies take equal-weighted or value-weighted long (short) positions on the subset of stocks in

the decile of highest (lowest) risk premium forecasts that are relatively imprecisely measured. Two other benchmark

strategies are also considered. 1%-HL strategies take long (short) positions on the top (bottom) 1% of stocks that

have relatively highest (lowest) return forecasts. These strategies contain the same number of stocks as Confident-

HL strategies but use the information only from return forecasts, ignoring their confidence intervals. Low-Ivol-HL

strategies take long (short) positions only on the subset of stocks in the decile of highest (lowest) risk premium forecasts

that have relatively low idiosyncratic volatility (rather than this paper’s variance measures of return forecasts). See

section 4.4.1.4.1.4 for a detailed description of the portfolios. All portfolio returns are also adjusted for Fama-French

5-factors plus momentum (FF-5+UMD). The “avg ret” column shows the average realized returns. The “α” columns

indicate abnormal returns. The “t” columns denote the t-stats of “average returns” and “α”. The “SR” and “IR”

columns represent the annualized Sharpe and Information ratios, respectively.

Panel A: Equal-weighted Strategies Panel B: Value-weighted Strategies

FF-5+Mom FF-5+Mom

Model Strategy avg ret Sh α IR avg ret Sh α IR

Lewellen

Confident-HL 2.27% 0.91 1.45% 0.90 1.87% 0.81 1.16% 0.70

HL 1.12% 0.69 0.54% 0.55 0.44% 0.47 0.30% 0.38

Low-Confident-HL 0.37% 0.22 0.41% 0.25 0.14% 0.09 0.15% 0.10

1%-HL 1.46% 0.58 0.78% 0.42 0.24% 0.11 -0.04% -0.02

Low-Ivol-HL 0.79% 0.55 0.56% 0.53 0.14% 0.12 0.13% 0.13

Lasso

Confident-HL 2.16% 1.11 1.82% 1.01 1.28% 0.59 0.58% 0.29

HL 1.01% 0.70 0.51% 0.41 0.58% 0.40 -0.09% -0.08

Low-Confident-HL 0.67% 0.33 0.18% 0.10 0.02% 0.01 -0.54% -0.31

1%-HL 1.79% 0.92 1.37% 0.80 0.54% 0.25 -0.21% -0.11

Low-Ivol-HL 0.75% 0.64 0.65% 0.59 0.62% 0.44 0.40% 0.30

NN-3

Confident-HL 3.42% 1.68 3.22% 1.74 2.22% 1.11 1.95% 1.03

HL 2.34% 1.42 2.13% 1.46 1.42% 0.88 0.99% 0.70

Low-Confident-HL 2.07% 1.04 1.80% 1.00 1.08% 0.45 0.37% 0.17

1%-HL 2.90% 1.43 2.62% 1.45 1.68% 0.84 1.20% 0.67

Low-Ivol-HL 0.79% 0.55 0.56% 0.53 0.14% 0.12 0.13% 0.13
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Table B: Performance of Various Trading Strategies under the IID Assumption: Non-
microcaps
This table reports the performance of different long-short portfolios that are constructed using monthly stock re-

turn forecasts and their estimated confidence intervals over the 34-year out-of-sample (OOS) period January 1987-

February 2020. Every period, the sample excludes microcap stocks with market capitall smaller than the 20th NYSE

size percentile. Panel A presents the equal-weighted strategies and Panel B shows the value-weighted strategies.

Expected return forecasts and their respective confidence intervals are simultaneously estimated under each of the

Lewellen, Lasso, and NN-3 models. The confidence intervals are estimated under the assumption that the model

residuals are iid. HL strategies are the conventional spread portfolios that exploit information only from the return

forecasts but not their confidence intervals. These strategies take long (short) positions on the top (bottom) decile

of stocks with relatively highest (lowest) return forecasts. In contrast, Confident-HL strategies use information from

both return forecasts and their confidence intervals by taking long (short) positions only on the subset of stocks in

the decile of highest (lowest) risk premium forecasts that have relatively more confident return predictions. Similarly,

Low-Confident-HL strategies take equal-weighted or value-weighted long (short) positions on the subset of stocks in

the decile of highest (lowest) risk premium forecasts that are relatively imprecisely measured. Two other benchmark

strategies are also considered. 1%-HL strategies take long (short) positions on the top (bottom) 1% of stocks that

have relatively highest (lowest) return forecasts. These strategies contain the same number of stocks as Confident-HL

strategies but use the information only from return forecasts, ignoring their confidence intervals. Low-Ivol-HL strate-

gies take long (short) positions only on the subset of stocks in the decile of highest (lowest) risk premium forecasts

that have relatively low idiosyncratic volatility (rather than this paper’s variance measures of return forecasts). See

section 4.4.1.4.1.4 for a detailed description of the portfolios. All portfolio returns are also adjusted for Fama-French

5-factors plus momentum (FF-5+UMD). The “avg ret” column shows the average realized returns. The “α” columns

indicate abnormal returns. The “t” columns denote the t-stats of “average returns” and “α”. The “SR” and “IR”

columns represent the annualized Sharpe and Information ratios, respectively.

Panel A: Equal-weighted Strategies Panel B: Value-weighted Strategies

FF-5+Mom FF-5+Mom

Model Strategy avg ret Sh α IR avg ret Sh α IR

Lewellen

Confident-HL 1.40% 0.58 0.60% 0.43 1.28% 0.56 0.50% 0.32

HL 0.95% 0.71 0.34% 0.47 0.53% 0.63 0.25% 0.40

Low-Confident-HL 0.61% 0.40 0.44% 0.33 0.07% 0.04 0.12% 0.11

1%-HL 1.04% 0.43 0.36% 0.21 0.49% 0.21 -0.17% -0.08

Low-Ivol-HL 0.48% 0.35 0.44% 0.37 0.13% 0.12 0.12% 0.12

Lasso

Confident-HL 1.25% 0.75 0.92% 0.63 1.43% 0.70 1.17% 0.63

HL 0.66% 0.55 0.49% 0.45 0.68% 0.54 0.51% 0.46

Low-Confident-HL 0.30% 0.17 0.38% 0.23 0.17% 0.09 0.24% 0.13

1%-HL 0.96% 0.57 0.63% 0.42 0.66% 0.32 0.41% 0.21

Low-Ivol-HL 0.64% 0.59 0.66% 0.44 0.75% 0.59 0.68% 0.47

NN-3

Confident-HL 2.12% 1.16 1.90% 1.12 1.98% 0.97 1.78% 0.92

HL 1.55% 0.95 1.27% 0.87 1.33% 0.81 1.02% 0.68

Low-Confident-HL 1.43% 0.71 1.06% 0.57 1.24% 0.58 0.89% 0.45

1%-HL 1.73% 0.95 1.50% 0.89 1.71% 0.83 1.49% 0.77

Low-Ivol-HL 1.12% 0.92 1.05% 0.88 0.89% 0.62 0.89% 0.67
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Figure C. Ex-ante Confidence and Ex-post OOS-R2

Note: Figure 2 (C) presents the OOS-R2s of various ex-ante confidence-sorted subsamples over the

30-year test sample. At each period, stocks are sorted into deciles according to their NN-3-based

(Lewellen-based) risk premium predictions’ ex-ante confidence. Decile-10 (decile-1) comprises the

top (bottom) 10% of stocks with the lowest (highest) precision. The y-axis represents the ex-post

OOS-R2s attained by the decile subsamples.

7



Table C: Transaction Costs and Higher-Moment Adjusted Performance of Various Strategies:
Non-microcaps
This table reports the transaction costs and higher-moment-risk-adjusted performance of different long-short portfolios

that are constructed using monthly stock return forecasts and their estimated confidence intervals over the 34-year

out-of-sample (OOS) period January 1987- February 2020. Every period, the sample excludes microcap stocks with

market capital smaller than the 20th NYSE size percentile. The Turnover column presents a portfolio’s average

monthly percentage change in holdings (i.e., turnover). A deduction of (0.005×Turnover) from a portfolio’s realized

return roughly approximates its transaction-cost-adjusted returns. The Drawdown, Omega, and Sortino columns

respectively represent the maximum drawdown, Omega, and Sortino ratios. These ratios measure the higher-moment-

risk-adjusted performance of portfolios, explicitly penalizing losses more than realizing gains. See table I and section

4.4.1.4.1.4 for a description of the portfolios.

Equal Weighted Value Weighted

Equal Weighted Value Weighted

Model Strategy Turnover Drawdown Omega Sortino Turnover Drawdown Omega Sortino

Lewellen

Confident-HL 0.92 0.74 2.00 0.39 1.01 0.74 2.00 0.39

HL 0.52 1.12 1.79 0.26 0.50 1.12 1.79 0.26

Low-Confident-HL 0.93 1.63 0.96 -0.02 0.99 1.63 0.96 -0.02

1%-HL 0.72 2.28 1.66 0.26 0.78 2.28 1.66 0.26

Low-Ivol-HL 0.64 0.92 1.53 0.22 0.73 0.92 1.53 0.22

Lasso

Confident-HL 1.21 1.17 2.02 0.39 1.08 0.76 1.79 0.37

HL 0.67 0.76 1.66 0.24 0.50 0.84 1.58 0.23

Low-Confident-HL 1.09 1.53 1.03 0.01 1.24 0.82 1.24 0.11

1%-HL 0.69 1.12 1.19 0.08 0.72 0.99 1.35 0.15

Low-Ivol-HL 0.64 1.14 1.32 0.14 0.64 1.19 1.36 0.16

NN-3

Confident-HL 1.76 0.31 2.87 0.83 1.84 0.43 2.36 0.59

HL 1.09 0.89 2.05 0.39 1.22 0.62 1.82 0.34

Low-Confident-HL 1.78 1.14 1.54 0.24 1.82 1.04 1.40 0.17

1%-HL 1.40 1.09 1.75 0.30 1.51 1.34 1.49 0.21

Low-Ivol-HL 1.55 0.92 1.53 0.22 1.62 1.12 1.31 0.13
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Table D: Performance of Various Long-Short Portfolios: Inverse Standard Errors as Precision
This table reports the performance of various NN-3-based long-short portfolios over the 30-year out-of-sample (OOS)

period. This table uses inverse standard errors (rather than the absolute t-ratios) of risk premium predictions as

proxies for ex-ante precision (i.e., ex-ante confidence). See table I and section 4.4.1.4.1.4 for a description of the

portfolios. The pred ret column represents the average predicted returns. The avg ret column shows the average

realized returns. The t, SR and SR2 columns denote the t-stats of the average returns, annualized Sharpe ratios and

squared Sharpe ratios, respectively. Notes: EW = equal-weighted; VW = value-weighted

All Stocks: Equal-Weighted High-low Portfolios

Strategy pred avg t SR SR2

EW-HL 1.69% 2.52% 8.21 1.50 2.25

EW-Low-Confident-HL 1.92% 3.02% 7.62 1.39 1.93

EW-Confident-HL 1.69% 3.07% 8.46 1.54 2.39

EW-Confident-HL − EW-HL 0.55%∗∗

(0.013)
0.14∗∗∗
(0.046)

EW-Confident-HL − EW-Low-Confident-HL 0.05%
(0.916)

0.45∗∗∗
(0.001)

All Stocks: Value-Weighted High-low Portfolios

Strategy pred avg t SR SR2

VW-HL 1.62% 1.48% 4.95 0.90 0.82

VW-Low-Confident-HL 1.88% 1.13% 2.47 0.45 0.20

VW-Confident-HL 1.64% 1.83% 5.68 1.04 1.08

VW-Confident-HL − VW-HL 0.35%∗

(0.067)
0.26∗∗∗
(0.022)

VW-Confident-HL − VW-Low-Confident-HL 0.70%∗

(0.071)
0.87∗∗∗
(0.000)

Non-Microcaps: Equal-Weighted High-low Portfolios

Strategy pred avg t SR SR2

EW-HL 0.68% 1.66% 5.43 0.99 0.980

EW-Low-Confident-HL 0.72% 1.30% 3.53 0.64 0.35

EW-Confident-HL 0.66% 1.87% 5.95 1.08 1.17

EW-Confident-HL − EW-HL 0.23%∗∗

(0.041)
0.19∗∗
(0.02)

EW-Confident-HL − EW-Low-Confident-HL 0.57%∗∗∗

(0.000)
0.82∗∗∗
(0.000)

Non-Microcaps: Value-Weighted High-low Portfolios

Strategy pred avg t SR SR2

VW-HL 0.66% 1.42% 4.64 0.85 0.72

VW-Low-Confident-HL 0.71% 1.25% 2.90 0.53 0.27

VW-Confident-HL 0.65% 1.91% 5.68 1.04 1.08

VW-Confident-HL − VW-HL 0.49%∗∗

(0.041)
0.36∗∗
(0.001)

VW-Confident-HL − VW-Low-Confident-HL 0.66%∗

(0.0723)
0.81∗∗∗
(0.000)
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Table E: Comparing Confident-HL Portfolios with Double-sorted HL Portfolios
This table compares the out-of-sample performance of the Confident-HL portfolios with the HL portfolios that are

double sorted on predicted-returns. EW(VW)-Confident-HL represents the equal(value)-weighted Confident long-

short portfolio that only include stocks with the most confident risk premium predictions. See section 4.4.1.4.1.4 for

a detailed description of the portfolios. Each period, stocks are sorted into quantiles according to their NN-based

risk premia. EW-double-sorted-HL and VW-double-sorted-HL denote the HL portfolios that take equal-weighted and

value-weighted long (short) positions on stocks that have greater (lower) predicted-returns than the predicted-return

of the 99th (1st) quantile, respectively. The avg ret column presents the average return differences between the pair of

investment strategies. The Sharpe2 and IR2 columns show the annualized squared-Sharpe and squared-information

ratio differences between the investment portfolios. The numbers in parenthesis are p-values. *, ** and *** denote

significance at the 1%, 5% and 10% levels, respectively.

All Stocks: Equal-Weighted High-low Portfolios

Strategy pred avg t SR SR2 IR2
FF IR2

SY

EW-Confident-HL 1.97% 3.61% 9.58 1.75 3.06 3.12 2.99

EW-double-sorted-HL 2.54% 3.99% 8.58 1.57 2.46 2.49 1.87

Difference −0.37%
(0.168)

0.60∗∗∗
(0.000)

0.96∗∗∗
(0.000)

1.12∗∗
(0.000)

All Stocks: Value-Weighted High-low Portfolios

Strategy pred avg t SR SR2 IR2
FF IR2

SY

VW-Confident-HL 1.90% 2.21% 5.95 1.09 1.18 0.87 0.59

VW-double-sorted-HL 2.51% 2.39% 5.28 0.96 0.93 0.5 0.42

Difference −0.18%
(0.61)

0.25∗∗
(0.02)

0.37∗∗
(0.016)

0.17∗∗
(0.03)

Non-Microcaps: Equal-Weighted High-low Portfolios

Strategy pred avg t SR SR2 IR2
FF IR2

SY

EW-Confident-HL 0.66% 2.25% 6.68 1.22 1.49 1.39 1.22

EW-double-sorted-HL 1.02% 2.39% 5.56 1.01 1.02 0.87 0.66

Difference −0.13%
(0.62)

0.47∗∗∗
(0.000)

0.52∗∗∗
(0.000)

0.56∗∗∗
(0.000)

Non-Microcaps: Value-Weighted High-low Portfolios

Strategy pred avg t SR SR2 IR2
FF IR2

SY

VW-Confident-HL 0.72% 2.07% 5.48 1.00 1.00 0.97 0.69

VW-double-sorted-HL 1.01% 2.20% 4.71 0.86 0.74 0.69 0.44

Difference −0.13%
(0.73)

0.26∗∗∗
(0.000)

0.28∗∗∗
(0.000)

0.25∗∗∗
(0.000)
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Table F: Comparing Confident-HL Portfolios with IVOL-based-Confident-HL Portfolios
This table compares the out-of-sample performance of the Confident-HL portfolios with the IVOL-based-Confident-

HL portfolios. The IVOL-based-Confident-HL portfolios are similar to the Confident-HL portfolios, with an exception

that the IVOL-based-Confident-HLs use past stock return idiosyncratic volatilities (rather than this paper’s ex-ante

risk premium variances) to compute the confidence levels of risk premium predictions. See section 4.4.1.4.1.4 for a

detailed description of the portfolios. The avg ret column shows the average realized returns. The α columns indicate

abnormal returns. The t columns denote the t-stats of average returns and α. The SR and IR columns represent the

annualized Sharpe and Information ratios, respectively.

Equal-Weighted

Undjusted FF-5+Mom SY

Strategy pred avg t SR α t IR α t IR

EW-Low-Confident-HL 1.79% 2.35% 6.46 1.18 1.97% 5.65 1.03 1.96% 5.28 0.96

EW-Confident-HL 1.97% 3.61% 9.58 1.75 3.29% 9.02 1.65 3.27% 8.6 1.57

IVOL-Low-Confident-HL 1.80% 5.75% 8.91 1.63 5.40% 8.14 1.49 5.31% 7.72 1.41

IVOL-Confident-HL 1.67% 1.29% 5.44 0.99 1.27% 5.60 1.022 1.27% 5.4 0.99
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Table G: Expected return predictions and their standard errors: 48 industry portfolios of
Fama and French (1997)
This table shows the average monthly-level ex-ante standard errors of NN-3-based risk premium predictions of 48

Fama and French industry portfolios. The “pred ret” column presents the average monthly predicted risk premiums.

The “std” column shows the average monthly standard errors of the risk premium predictions. The elements in

“t-ratio” column are the ratios of the entities in “ret” and “std” columns.

Industry code Industry name pred ret std t-ratio

47 Fin 1.39% 0.032% 43.32

34 BusSv 1.30% 0.044% 29.25

44 Banks 1.51% 0.047% 31.86

36 Chips 1.31% 0.066% 19.97

42 Rtail 1.37% 0.068% 20.19

30 Oil 1.17% 0.070% 16.69

13 Drugs 1.24% 0.071% 17.40

41 Whlsl 1.38% 0.074% 18.59

45 Insur 1.43% 0.079% 18.01

31 Util 1.30% 0.081% 16.03

32 Telcm 1.28% 0.081% 15.85

35 Comps 1.32% 0.085% 15.54

21 Mach 1.37% 0.086% 15.94

12 MedEq 1.31% 0.087% 15.07

40 Trans 1.30% 0.091% 14.30

22 ElcEq 1.35% 0.097% 13.84

43 Meals 1.37% 0.101% 13.57

11 Hlth 1.35% 0.107% 12.66

14 Chems 1.33% 0.109% 12.21

37 LabEq 1.35% 0.109% 12.39

17 BldMt 1.37% 0.114% 12.02

9 Hshld 1.40% 0.116% 12.01

2 Food 1.38% 0.121% 11.37
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Table H: Expected return predictions and their standard errors: 48 industry portfolios of
Fama and French (1997)
This table shows the average monthly-level ex-ante standard errors of NN-3-based risk premium predictions of 48

Fama and French industry portfolios. The “pred ret” column presents the average monthly predicted risk premiums.

The “std” column shows the average monthly standard errors of the risk premium predictions. The elements in

“t-ratio” column are the ratios of the entities in “ret” and “std” columns.

Industry code Industry name pred ret std t-ratio

48 Other 1.34% 0.122% 10.98

23 Autos 1.37% 0.127% 10.73

7 Fun 1.32% 0.128% 10.32

19 Steel 1.29% 0.130% 9.90

18 Cnstr 1.29% 0.136% 9.53

27 Gold 1.11% 0.138% 8.06

33 PerSv 1.36% 0.138% 9.81

46 RlEst 1.33% 0.143% 9.32

8 Books 1.36% 0.144% 9.44

38 Paper 1.36% 0.146% 9.31

10 Clths 1.37% 0.147% 9.35

6 Toys 1.38% 0.163% 8.48

28 Mines 1.13% 0.179% 6.30

15 Rubbr 1.40% 0.181% 7.74

24 Aero 1.37% 0.221% 6.20

16 Txtls 1.41% 0.224% 6.30

4 Beer 1.38% 0.226% 6.12

39 Boxes 1.37% 0.248% 5.51

1 Agric 1.31% 0.266% 4.92

3 Soda 1.30% 0.266% 4.89

20 FabPr 1.44% 0.271% 5.32

29 Coal 1.22% 0.321% 3.80

25 Ships 1.32% 0.364% 3.64

26 Guns 1.32% 0.365% 3.62

5 Smoke 1.24% 0.379% 3.27
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Table I: Performance of Various Trading Strategies: 48 industry portfolios of Fama and French
(1997)
This table compares the performance of the EW and mean-variance trading strategies formed using 48 industries

of Fama and French (1997) over the 30-year out-of-sample (OOS) period. The “avg ret” column shows the average

monthly returns. The “t” column presents the t-stats of average returns of both strategies. The “SR” column shows

the Sharpe ratios of both strategies.

Strategy avg ret t SR

EW 1.06% 3.66 0.66

Mean-variance 1.82% 6.59 1.2
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E. Simulation results

E1. Validating standard errors using simulations

Using simulations, this section (table J) affirms that the estimated variances are well-calibrated

in the frequentist sense. Using a high dimensional predictor set, I simulate risk premiums from

four different data generating processes. Whereas the first two model returns as a linear function

of predictors with homoscedastic and correlated residuals, respectively, the last two entertain non-

linear functions. Across all models, 95% (or any x% with 0 < x < 100) confidence intervals

constructed from risk premium predictions and their standard errors cover the true simulated risk

premia with nearly 95% (x%) probability.

5.1.1. Simulation Details

To assess the finite sample performance of this paper’s standard errors and Confident-HL

portfolios, I replicate the simulation exercise of GKX.18 I simulate a 3-factor model for excess

returns, for t = 1, 2, . . . , T :

ri,t+1 = g(zi,t) + ei,t+1, ei,t+1 = βi,tvt+1 + ϵi,t+1, zi,t = (1, xt)
′ ⊗ ci,t, βi,t = (ci1,t, ci2,t, ci3,t), (49)

where ct is a 200×180 matrix of characteristics, vt+1 is a 3×1 vector of factors, xt is a univariate time

series, and ϵt+1 is a 200×1 vector of idiosyncratic errors. I choose vt+1 = 0, ∀t under models 1 and 3

and vt+1 ∼ N (0, 0.052×I) under models 2 and 4, respectively. I specify ϵi,t+1 ∼ ϵi,t+1 ∼ N (0, 0.052).

These parameters are calibrated so that the average time series R2 is 50% (40%) and annualized

volatility is 24% (30%) under models 1 and 3 (2 and 4). The OOS-R2 of NN-3-based risk premium

predictions on the simulated data is 3.8% (3.2%) under models 1 and 3 (2 and 4).

I simulate the panel of characteristics by

cij,t =
2

N + 1
CSrank(c̄ij,t)− 1, c̄ij,t = ρj c̄ij,t−1 + ϵij,t, for 1 ≤ i ≤ 200, 1 ≤ j ≤ 180, (50)

where CSrank denotes the cross-sectional rank.

And the time-series xt is given by

xt = ρxt−1 + ut, (51)

where ut ∼ N (0, 1− ρ2), and ρ = 0.95 so that xt is highly persistent.

18I thank GKX for making their code publicly available.
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Under models 1 and 2, the parametric form of g(.) is linear and given by

g(zi,t) = (ci1,t, ci2,t, ci3,t)θ0, where θ0 = (0.02, 0.02, 0.02)
′
. (52)

In contrast, under models 3 and 4, g(.) takes the following non-linear functional form

g(zi,t) = (c2i1,t, ci1,t × ci2,t, sgn(ci3,t × xt))θ0, where θ0 = (0.04, 0.03, 0.012)
′
. (53)

To summarize, the simulated true risk premia are linear in characteristics under models 1 and 2,

whereas they are non-linear under models 3 and 4. Models 1 and 3 do not entertain cross-sectional

temporal residual correlations, whereas models 2 and 4 do.

Lastly, I divide the whole time-series into three consecutive subsamples of equal length (60)

for training, validation, and testing, respectively. Although this paper’s standard errors are derived

under the assumption that the residual errors are uncorrelated in the time-series and cross-section,

table (J) indicates that the standard errors are well-calibrated even under models 2 and 4.

Simulations for table (L) of the Internet Appendix use the non-linear specification of model 3,

given by

ri,t+1 = g(zi,t) + ei,t+1, ei,t+1 = ϵi,t+1, zi,t = (1, xt)
′ ⊗ ci,t, (54)

where ϵi,t+1 ∼ ϵi,t+1 ∼ N (0, 0.052), g(zi,t) is given by (53) and ci,t is given by (50).
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Table J: Calibration of the Confidence Intervals: Monte Carlo Evidence
This table validates the proposed standard errors using Monte Carlo simulations. The data comprise monthly stock

risk premia and their raw predictors simulated under four different models 1-4. On the simulated data, confidence

intervals (CIs) of various levels are constructed using NN-based risk premium predictions and their standard errors.

Each row presents the confidence level and probabilities with which the corresponding level’s confidence intervals

cover the true simulated risk premia under the four models.

Probability that CI contains true risk premium

Confidence level Model 1 Model 2 Model 3 Model 4

1% 1.26% 1.49% 1.08% 0.91%

5% 6.23% 6.65% 4.64% 3.63%

10% 11.81% 13.16% 8.98% 7.57%

20% 23.83% 26.26% 17.78% 16.17%

50% 48.72% 61.62% 46.85% 43.64%

60% 57.73% 73.10% 59.38% 55.52%

80% 78.94% 90.73% 83.60% 79.66%

90% 90.24% 96.48% 93.72% 90.36%

95% 96.03% 98.56% 97.39% 95.20%

99% 99.33% 99.74% 99.36% 98.75%
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E2. Simulations demonstrating why Confident-HL strategies outperform

Building on the result that the ex-ante variances predict their squared forecast errors, this

subsection illustrates why the Confident-HL portfolios that utilize confidence intervals deliver su-

perior expected returns OOS. I use simulations because computing the expected OOS returns of

sorting-based HL strategies requires obtaining various moments of “order statistics”, which are not

available in the closed-form expressions. The exercise that follows resembles example-1.

Consider a simple model based on two sets of stocks, viz. SA, SB, each containg 2N stocks.

Let the stocks in SA and SB have the true expected risk premiums of µA and µB, respectively, with

µA > µB. Because these risk premiums are unknown, consider an econometric model that delivers

unbiased, normal, and independent forecasts of stock risk premiums. Further suppose that the risk

premium forecasts of N stocks each in SA and SB are relatively precisely (imprecisely) measured

with the variance of σ2
l (σ2

h), and σ2
l < σ2

h.

Denote QL (QS) as the median portfolio of stocks containing the top (bottom) 2N stocks that

have relatively highest (lowest) risk premium predictions. Now, consider the following sorting-based

trading strategies formed using risk premium forecasts and their variances.

1. HL. This strategy takes EW long (short) positions on all stocks in QL (QS).

2. Confident-HL. This strategy further sorts stocks in the median portfolio, QL (QS), based

on their confidence levels (i.e., absolute t-ratios) and takes long (short) positions on the subset of

top N stocks with relatively higher confidence-levels.

3. Low-Confident-HL. In contrast, this strategy takes EW long (short) positions on the

subset of N stocks in QL (QS) with relatively lower confidence levels.

Thus, Confident-HL and Low-confident-HL are conditional strategies that first sort stocks

based on their risk premium forecasts and later on their confidence levels. Note that the EW-HL

strategy takes EW long (short) positions on 2N , whereas the Confident-HL and Low-Confident-HL

strategies go long (short) only on N stocks. Thus, to make a fair comparison, I also consider the

following double-sorted strategy.

4. 1%-HL. This strategy further sorts stocks in the median portfolio, QL (QS), based on

their risk premium forecasts and takes long (short) positions on the top N stocks with relatively

higher (lower) return predictions. In other words, this strategy takes EW long (short) positions on

the top (bottom) N stocks with the highest (lowest) return forecasts.

Table K presents the expected OOS monthly returns of all trading strategies formed using

200 stocks for a wide range of parameters (i.e., µA, µB, σl, and σh), over 30 years of simulated

data. Across all specifications, the Confident-HL strategy outperforms all other trading strategies

in terms of expected OOS returns. Because of the estimation uncertainty, strategies that sort

solely on return forecasts make mistakes by incorrectly going long (short) on the stocks having true
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expected risk premiums of µB (µA). The Confident-HL strategy minimizes this misclassification

bias by selectively taking positions in the subset of stocks in QL and QS that have relatively more

precise risk premium forecasts. Thus, the Confident-HL strategies deliver superior expected OOS

returns. In contrast, the Low-Confident-HL portfolio delivers relatively lower expected OOS returns

than all the other strategies. The reason is that it exclusively comprises stocks with imprecise risk

premium forecasts, thus it induces significant misclassification bias.
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Table K: Comparing the OOS Performance of Various Trading Strategies: Simulation Evidence
This table compares the expected OOS monthly returns of various trading strategies based on several simulated

datasets containing 200 stock risk premiums over 30 years. Risk premium predictions are simulated to be unbiased,

normal, and independent. 100 stocks yield true expected returns of µA, whereas the other 100 yield µB . Of the 100

stocks that deliver µA expected returns, 50 stocks are relatively precisely (imprecisely) measured with the predicted

risk premium variance of σl (σh). Similarly, of the 100 stocks that deliver µB expected returns, 50 stocks are

relatively precisely (imprecisely) measured with the predicted risk premium variance of σl (σh). ’Risk Premium

Variances’ column presents the variances of risk premium predictions used for simulations. “True Spread Expected

Returns” shows simulated µA, µB , and µA − µB . The “Expected OOS Returns” columns present the expected OOS

returns of various trading strategies.

Expected OOS Returns

Risk Premium Variances True Spread Expected Returns EW-HL Double-sorted-HL Confident-HL Low-confident-HL

σl=0.001,σh=0.02 µA = 3%, µB = −3%, µA − µB = 6% 2.46% 2.49% 4.18% 0.74%

σl=0.001,σh=0.5 µA = 3%, µB = −3%, µA − µB = 6% 2.06% 0.77% 3.91% 0.21%

σl=0.01, σh=0.1 µA = 3%, µB = −3%, µA − µB = 6% 0.94% 1.17% 1.57% 0.32%

σl=0.01, σh=0.5 µA = 3%, µB = −3%, µA − µB = 6% 0.80% 0.67% 1.47% 0.12%

σl=1, σh=5 µA = 3%, µB = −3%, µA − µB = 6% 0.08% 0.09% 0.14% 0.01%

σl=0.001, σh=0.005 µA = 3%, µB = −3%, µA − µB = 6% 2.94% 3.90% 4.53% 1.35%

σl=0.001,σh=0.02 µA = 2%, µb = −2%, µA − µB = 4% 1.20% 1.25% 2.05% 0.36%

σl=0.001,σh=0.5 µA = 2%, µb = −2%, µA − µB = 4% 0.98% 0.38% 1.88% 0.07%

σl=0.01, σh=0.1 µA = 2%, µb = −2%, µA − µB = 4% 0.415% 0.530% 0.722% 0.108%

σl=0.01, σh=0.5 µA = 2%, µb = −2%, µA − µB = 4% 0.38% 0.33% 0.65% 0.11%

σl=1, σh=5 µA = 2%, µb = −2%, µA − µB = 4% 0.037% 0.061% 0.076% -0.002%

σl=0.001, σh=0.005 µA = 2%, µb = −2%, µA − µB = 4% 1.41% 1.93% 2.25% 0.57%

σl=0.001,σh=0.02 µA = 1%, µB = −1%, µA − µB = 2% 0.31% 0.34% 0.54% 0.07%

σl=0.001,σh=0.5 µA = 1%, µB = −1%, µA − µB = 2% 0.27% 0.13% 0.51% 0.03%

σl=0.01, σh=0.1 µA = 1%, µB = −1%, µA − µB = 2% 0.11% 0.15% 0.19% 0.03%

σl=0.01, σh=0.5 µA = 1%, µB = −1%, µA − µB = 2% 0.10% 0.10% 0.18% 0.03%

σl=1, σh=5 µA = 1%, µB = −1%, µA − µB = 2% 0% 0% 0.02% -0.01%

σl=0.001, σh=0.005 µA = 1%, µB = −1%, µA − µB = 2% 0.35% 0.49% 0.58% 0.12%
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Table L: Performance of HL and Confident-HL Portfolios: Simulation Evidence
This table compares the performance of the confident high-low portfolios with the conventional high-low portfolios

on simulated data. The data contains 200 stock-level simulated true risk premia, NN-3-based estimated risk premia

and their standard errors over 60 out-of-sample periods. Every period, the “True High-Low” portfolios take long

(short) positions on the stocks with the simulated true risk premia greater (lower) than the x% (100−x%) percentile

of the true risk premia across 200 stocks. x equals 80, 70 and 90 under rule 1, 2 and 3, respectively. The “High-Low”

portfolios take long (short) positions on the stocks with NN-3-based risk premium estimates greater (lower) than

the x% (100− x%) percentile of the predicted risk premia in the cross-section. Extreme predicted-return deciles are

further partitioned into quantiles according to their precision measures. Panel A (Panel B) presents the results using

the absolute t-ratios (inverse standard errors) as proxies for the precision. The “Confident High-Low” portfolios take

long-short positions on the top y% subset of stocks in the extreme predicted return deciles that have the highest

precision. y equals 80, 80 and 50 under rule 1, 2 and 3, respectively. The “Matching High-Low” portfolios take

(short) positions on the stocks with NN-3-based risk premium predictions greater (lower) than the z% (100 − z%)

percentile of the predicted risk premia in the cross-section. See section (E.E1.5.1.1) and equation (54) for a detailed

description of the simulated data.

Panel A: Confident-HL Portfolios Constructed Using Absolute t-ratios

Rule 1 Rule 2 Rule 3

Portfolio pred ret avg ret pred ret avg ret pred ret avg ret

True High-Low 2.45% 2.45% 2.16% 2.16% 2.74% 2.74%

High-Low 3.04% 1.69% 2.60% 1.45% 3.57% 1.88%

Matching High-Low 3.64% 1.90% 3.45% 1.84% 3.72% 1.92%

Confident High-Low 3.65% 2.31% 3.47% 2.23% 3.74% 2.23%

Panel B: Confident-HL Portfolios Constructed Using Standard Errors

Rule 1 Rule 2 Rule 3

Portfolio pred ret avg ret pred ret avg ret pred ret avg ret

True High-Low 2.45% 2.45% 2.16% 2.16% 2.74% 2.74%

High-Low 3.04% 1.69% 2.60% 1.45% 3.57% 1.88%

Confident High-Low 2.72% 2.18% 2.34% 1.99% 3.41% 2.18%
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F. Internet Appendix: Proofs of theorems 1-4

1. Proof of theorem 1

Under the double exponential prior specification, the posterior log-density of β is

Π(β|{rit}, {zit}) ∝ −
{λ1

ση

p∑
j=1

|βj |+
λ2

2σ2
η

p∑
j−1

|βj |2+
1

NTrNS

∑
t∈Tr

∑
i∈S

(
ri,t+1 − zTitβ − Λift+1

)2
(f2

t+1)
}
.

(55)

Posterior mode of β maximizes (55), which is equivalent to minimizing

β̂l = argmin
β

1

NTrNS

∑
t∈Tr

∑
i∈S

(
ri,t+1 − zTitβ − Λift+1

)2
(f2

t+1) + µ1||β||1 + µ2||β||2, (56)

where µ1 =
λ1
ση
, and µ2 =

λ2
2σ2

η
.

Comparing (55) and (56) proves theorem (1).

2. Proof of theorem 2

Using Gal and Ghahramani (2016), I obtain the following expressions for the VI-based approx-

imated predictive distribution of returns, respectively.

PV I(r
∗
i,t+1|z∗it, R, Z) = P (r∗i,t+1|z∗it, R, Z,Ω)q(Ω)

q(Ω) =

K∏
k=1

pi,k, where each pi,k ∼ Bern(p),

P (r∗i,t+1|z∗it, R, Z,Ω) = N (r∗i,t+1; Êi,Ω,t, σ
2
ηI), (57)

where Bern() represents Bernoulli distribution. Êi,Ω,t is given by (19), with d replaced by Ω.

Note that r∗i,t+1 = µ∗
i,t+ηi,t+1, where ηi,t+1 is independent of all information (random variables)
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at t. Denoting EV I(.) as the expectation under the VI-based approximated posterior, note that

EV I(µ
∗
i,t) = EV I(r

∗
i,t+1|z∗it, R, Z) =

∫
r∗i,t+1PV I(r

∗
i,t+1|z∗it, R, Z)dr∗i,t+1

=

∫ r∗i,t+1N (r∗i,t+1; Êi,Ω,t, σ
2
ηI)

K∏
k=1

pi,k

 dpi,1dpi,2 . . . dpi,Kdr∗i,t+1

=

∫ r∗i,t+1N (r∗i,t+1; Êi,Ω,t, σ
2
ηI)

K∏
k=1

pi,k

 dpi,1dpi,2 . . . dpi,Kdr∗i,t+1

=

∫ (
r∗i,t+1N (r∗i,t+1; Êi,Ω,t, σ

2
ηI)dr

∗
i,t+1

) K∏
k=1

pi,kdpi,1dpi,2 . . . dpi,K

=

∫ (
Êi,Ω,tdr

∗
i,t+1

) K∏
k=1

pi,kdpi,1dpi,2 . . . dpi,K (58)

Note that by the weak law of large numbers, as D → ∞, the monte-carlo sum

1

D

D∑
d=1

(b2,{λ,p} + ϕ(b1,{λ,p} + z∗it(p1idW1,{λ,p}))(p2idW2,{λ,p}))
p→ EV I(µ

∗
i,t) (59)

where each element in {p1i,d, p2i,d}Di=1 is an independent draw from ∼ Bernoulli(p), and D is the

total number of distinct predictions drawn at the test time with dropout applied.

Lastly, (??) =⇒ E∗
it,Dropout

p→ EV I(µ
∗
i,t)

3. Proof of theorem 3

Denoting V arV I(.) as the variance under the VI-based approximated posterior, note that

V arV I

[
(r∗i,t+1|z∗it, R, Z)

]
= EV I

[
V arW1,W2(r

∗
i,t+1|z∗it, R, Z,W1,W2)

]
+V arV I

[
EW1,W2(r

∗
i,t+1|z∗it, R, Z,W1,W2)

]
,

where EW1,W2 and V arW1,W2 represent conditional variance and expectation operations given W1,

W2, respectively. Further note that V arW1,W2(r
∗
i,t+1|z∗it, R, Z,W1,W2) = σ2

η. Thus,

V arV I

[
(r∗i,t+1|z∗it, R, Z)

]
= σ2

η + V arV I

[
EW1,W2(r

∗
i,t+1|z∗it, R, Z,W1,W2)

]
,

Similar to (59) in the proof of theorem 2 , and by the weak law of large numbers, as D → ∞

1

D

D∑
d=1

Êi,d,t −
1

D

D∑
d=1

Êi,d,t

2

p→ V arV I

[
EW1,W2(r

∗
i,t+1|z∗it, R, Z,W1,W2)

]
(60)
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Thus,

1

D

D∑
d=1

Êi,d,t −
1

D

D∑
d=1

Êi,d,t

2

+ σ2
η

p→ V arV I

[
(r∗i,t+1|z∗it, R, Z)

]
(61)

Denote V arV I

[
(r∗i,t+1|z∗it, R, Z)

]
by V arV I(r

∗
i,t+1), where VV I represents the variance operation

under the VI-based probability distribution PV I(.|z∗it, R, Z). Note that by (31), and by the law of

total variance,

V arV I(r
∗
i,t+1) = V arV I(E(r∗i,t+1|W1,W2)) + EV I(V (r∗i,t+1|W1,W2)), (62)

where W1,W2 are the unknown weight matrices of the NN-1; EV I represents the expectation op-

eration under the probability distribution PV I(r
∗
i,t+1|z∗it, R, Z); E(), V () represents the expectation

and variance operations under the likelihood function (31), respectively.

(62) further implies that

V arV I(r
∗
i,t+1) = V arV I(µ

∗
i,t) + σ2

η, (63)

because E(r∗i,t+1|W1,W2) = µ∗
i,t, and V ar(r∗i,t+1|W1,W2) = σ2

η, which is assumed to be known.

Thus, (60) and (62) implies

1

D

D∑
d=1

Êi,d,t −
1

D

D∑
d=1

Êi,d,t

2

p→ V arV I(µ
∗
i,t). (64)

4. Proof of Theorem-3

To compute covariances, VI-based approximated joint density of return predictions is required.

Straightforward algebra implies that it is given by

PV I(r
∗
1,t+1, r

∗
2,t+1, . . . r

∗
S,t+1|{z∗it}Si=1, R, Z) = P (r∗1,t+1, r

∗
2,t+1, . . . r

∗
S,t+1|{z∗it}Si=1, R, Z,Ω)q(Ω)

q(Ω) =

K∏
k=1

pi,k, where each pi,k ∼ Bern(p),

P (r∗1,t+1, r
∗
2,t+1, . . . r

∗
S,t+1|{z∗it}Si=1, R, Z,Ω) = N (ÊS,Ω,t, σ

2
ηI), where ÊS,Ω,t =


Ê1,Ω,t

Ê2,Ω,t

...

ÊS,Ω,t

 , (65)
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with each Êi,Ω,t given by (19). The key is to use the same Ω across the stocks, as discussed in the

main section of the paper.

Then, similar to the proof of (3), the covariance of any two return VI-based posterior predictive

densities satisfy

1

D

D∑
d=1

Êi,d,t −
1

D

D∑
d=1

Êi,d,t

Êj,d,t −
1

D

D∑
d=1

Êj,d,t

 p→ CovarV I

[
(r∗i,t+1, r

∗
j,t+1|z∗it, R, Z)

]
, (66)

for any i, j (i ̸= j), where CovarV I

[
(r∗i,t+1, r

∗
j,t+1|z∗it, R, Z)

]
denotes the covariance between the

return predictions r∗i,t+1, r
∗
j,t+1 under the VI-based approximated joint posterior density.

Because r∗i,t+1 = µ∗
i,t + ηi,t+1 and r∗j,t+1 = µ∗

j,t + ηj,t+1, with ηi,t+1 and ηj,t+1 independent of all

other random variables, it is immediate that

1

D

D∑
d=1

Êi,d,t −
1

D

D∑
d=1

Êi,d,t

Êj,d,t −
1

D

D∑
d=1

Êj,d,t

 p→ CovarV I

[
(µ∗

i,t, µ
∗
j,t|z∗it, R, Z)

]
. (67)

5. Proof of theorem 5

The proof is straightforward from the proof of theorem 4.
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G. Internet Appendix: Frequentist Consistency

This section lays out the conditions under which the dropout-based or the VI-based approxi-

mated risk premium predictions from Bayesian NNs satisfy the frequentist consistency, by proving

theorem 6.

Suppose that, given a set of characteristics zit, excess returns are given by

ri,t+1 = b2 + ϕ(b1 + zitWo1)Wo2 + ηi,t+1, ηi,t+1 = N(0, σ2
η), ∀i., (68)

with the weight matrices Wo1, Wo2 unknown, but b1, b2, σ
2
η known.

Denote the set of true parameters

θ0 = {Wo1,Wo2} (69)

Now consider the Bayesian NN specification similar to (31) in section B, with parameters θ =

{W1,W2} . In the spirit of Bernstein-von Mises theorem (Kleijn and Vaart (2012); Vaart (2000);

Wang and Blei (2019)), make the following assumptions on the prior and likelihood functions.

Assumption 1: (Prior mass). The prior density P (θ) is continuous and positive in a neighborhood

of θ0. There exists a constant Mp > 0 such that |logP (θ)′′| ≤ Mpe
|θ|2.

Comment: Assumption 1 states that the prior has some mass around the true parameter θ0.

Assumption 1 also puts a bound on the growth rate of the log prior likelihood. These assumptions

are very mild, which many commonly used priors, including this paper’s priors (33), satisfy.

Assumption 2: (Consistent testability). For every ϵ > 0, ∃ a sequence of tests ϕn such that∫
ϕn(R)

[
Πp0(rit)

]
dR → 0, (70)

sup
θ:||θ−θ0||≥ϵ

∫
(1− ϕn(R))

[
Πp0(rit)

]
dR → 0, (71)

where R denotes the panel of excess returns for a given set of stocks over a given period of time;

p(rit|θ) represents the likelihood of rit given θ; p0(rit) denotes the likelihood of rit given θ0.

Comment: Assumption 2 requires that θ0 is identifiable from the likelihood function p0(rit),

which this paper’s likelihood satisfies. In particular, to meet assumption 2, it suffices to show that
p(R|θ1)
p(R|θ2) is a continuous function of R, for all θ1 θ2.

Assumption 3: (Local asymptotic normality). For every compact set K ⊂ Rd, ∃ random vectors
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∆n,θ0 bounded in probability and nonsingular matrices Vθ0 such that

sup
h∈K

∣∣∣∣log p(R|θ0 + δnh)

P (R|θ0)
− hTVθ0∆n,θ0 +

1

2
hTVθ0h

∣∣∣∣ P0→ 0, (72)

where δn is a d × d diagonal matrix that describes how fast each dimension of the θ posterior

converges to a point mass, with δn → 0 as n → ∞.

Comment. This assumption determines the limiting normal distribution of the VI-based

approximated posterior. The quantities ∆n,θ0 and Vθ0 determine the normal distribution that the

VI-approximated posterior will converge to. The constant δn determines the convergence rate of

the VI-approximated posterior to a point mass.

Result 1: Given the parameteric specification of excess returns in (68), and the iid assumption of

excess returns given the parameters, Theorem 7.2 of Vaart (2000) implies that

sup
h∈K

∣∣∣∣∣∣log p(R|θ0 + h/
√
num)

P (R|θ0)
− 1

num

∑
i,t

hT p
′
θ0(rit) +

1

2
hT Iθ0h

∣∣∣∣∣∣ P0→ 0, (73)

where num is the total number of stocks and time periods; p
′
θ0
(rit) is the derivative of the likelihood

function evaluated at θ0; Iθ0 is the Fisher information matrix evaluated at θ0.

Thus, result 1 shows that this paper’s framework satisfies assumption 3. Moreover, note that

VI-based posteriors would eventually converge to the multivariate normal centered around the

maximum likelihood estimator, with a convergence rate of
√
num.

Result 2: Under assumptions 1-3, the optimal variational density converges in total variation to

the KL minimizer of the multivariate normal with mean equal to the MLE of θ and variance equal

to the information matrix (evaluated at θ0).∣∣∣∣∣∣
∣∣∣∣∣qM∗

1 ,M
∗
2
(.)− argmin

q
KL

(
q()||MVN

(
θ̂MLE , (1/

√
num)Iθ0

))∣∣∣∣∣
∣∣∣∣∣∣
TV

p→ 0, (74)

where qM∗
1 ,M

∗
2
(.) are given in (35), with optimal M∗

1 ,M
∗
2 substituted for M1,M2; {M∗

1 ,M
∗
2 } are

given in (38); θ̂MLE denotes the MLE of θ.

Proof. The proof follows directly from result 1 and theorem 5 (5.2) of Wang and Blei (2019).

Comment. Note that the KL minimizer argminq KL
(
q()||MVN(θ̂MLE , Iθ0)

)
is the member

in the variational family containing the mixture of Gaussian distributions (35) that is closest to the

multivariate normal centered around MLE. Thus, even the KL minimizer is a mixture of Gaussians.
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However, given that the weight matrices W1 and W2 are independent across columns or neurons K,

as K → ∞, the KL minimizer converges to a multivariate normal. The reason is that the entropy of

a mixture of Gaussians with a large enough dimensionality and randomly distributed means tends

towards to the sum of Gaussians’ volumes.19. In addition, note that the VI family qM1,M2 specifies

the rows of W1 and W2 to be correlated, thus capturing all significant correlations between NN

weights. Although the VI family ignores the correlations across columns, such correlations would

be negligible as K → ∞. For example, Gal and Ghahramani (2016) note that the variational family

induces strong joint correlations over the rows of matrices Wi, which correspond to the frequencies

in sparse spectrum Gaussian Process (equivalent to Bayesian NN) approximation. Thus, the KL

minimizer could be approximated by

argmin
q

KL
(
q()||MVN(θ̂MLE , Iθ0)

)
≈ MVN

(
θ̂MLE , (1/

√
num)Iθ0

)
(75)

Thus, due to (75), the following result follows.

Result 3: Under assumptions 1-3, the optimal variational density converges in total variation to

the multivariate normal with mean equal to the MLE of θ and variance equal to the information

matrix (evaluated at θ0).∣∣∣∣∣
∣∣∣∣qM∗

1 ,M
∗
2
(.)−MVN

(
θ̂MLE , (1/

√
num)Iθ0

)∣∣∣∣
∣∣∣∣∣
TV

p→ 0. (76)

Note that the paper focuses on the joint density of risk premium predictions (rather than

NN weights). Because risk premiums could be expressed as smooth functions of θ given a set of

characteristics, i.e.,

µ∗
i,t = b2 + ϕ(b1 + z∗itW1)W2, (77)

applying the delta method to (76) proves theorem 6.

19For a detailed proof, see the appendix (page 7) of Gal and Ghahramani (2016).
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H. Mean-variance Strategies

This section discusses the regularized mean-variance strategies that take into account the entire

covariance structure (not just variances) of risk premium forecasts.

Consider a set of n stock return forecasts µ̂, with the covariance matrix Σ̂r. Note that Σ̂r

denotes the covariance of return predictions (not risk premium forecasts). Thus, due to (31),

Σ̂r = Σ̂er + σ2
ηI, where Σ̂er denotes the covariance of risk premium predictions (estimated in (20)),

and σ2
η denotes the NN model’s residual variance. Then the mean-variance efficient weights of

Kozak et al. (2019) that explicitly take into account the estimation uncertainty of risk premiums is

w = argmin
w

(µ̂− Σ̂rw)
′
Σ̂r

−1
(µ̂− Σ̂rw) + γ1w

′
w + γ2

∑
|wi|, (78)

where the weights w = [w1, w2, . . . , wn]
′
. The realized excess returns of the mean-variance strategy

is given by w
′
r, where r denotes the realized excess returns of N stocks. (78) is also equivalent to

w = argmin
w

(µ̂− Σ̂erw)
′
Σ̂er

−1
(µ̂− Σ̂erw) + γ3w

′
w + γ2

∑
|wi|, (79)

for a different parameter γ3 (rather than γ1).

The regularization parameters (i.e., γ3, γ2) solve two purposes. First, because of the estimation

uncertainty in risk premiums, the traditional mean-variance portfolio weights often take extreme

values and perform poorly OOS. The regularization mitigates this problem by constraining the

weights. Second, recall that the paper estimates the covariance of risk premium predictions (Σer)

using 100 dropout samples, rendering it non-invertable when there are more than 100 stocks. The

regularization ensures that the regularized covariance matrix is always invertible.

I choose optimal γ1 and γ3 so that mean-variance portfolio’s Sharpe ratio is maximized in the

validation sample. Because any scaled portfolio weights (i.e., λw, where λ is a scalar) deliver the

same Sharpe ratio as w, I scale weights so that 1
2

∑
|wi| = 1. This specification is consistent with

the EW HL and Confident-HL strategies, whose portfolio absolute weights always sum to 2.20

Interpreting Confident-HL strategies

Note that the previously considered regularized mean-variance strategy uses a unified L1 reg-

ularization coefficient, γ2, across all stocks. Alternatively, consider the following strategy that

imposes the adaptive L1 regularization

w = argmin
w

(µ̂− Σ̂erw)
′
Σ̂er

−1
(µ̂− Σ̂erw) + γ3w

′
w +

∑
γ2i|wi|, , (80)

20In addition, Lintner (1965) notes that paying interest on margin deposits and short-sale proceeds would lead to
optimal mean-variance weights that are scaled by

∑
|wi|. Also, see Pástor and Stambaugh (2000).
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where the L1 regularization coefficients γ2i vary across assets. If γ2i is allowed to be proportional

to stock i’s risk premium forecast variances, the resultant strategy discards all stocks with high

risk premium forecast variances and thus reduces to the Confident-HL strategy.
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